首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, ionic liquids have attracted the attention of many chemists as a result of their unique properties as solvents for chemical transformations. The focus of this Minireview is on applications of so‐called “task‐specific” ionic liquids, whereby the role of the ionic liquid goes beyond that of a solvent. Such ionic liquids find application in a wide range of areas, including catalysis, synthesis, gas absorption, and analysis.  相似文献   

2.
A poly(ionic liquid) (BA‐PIL) carrying a benzoic acid group in each repeating unit of the polymer architecture, which has the dual function of acting as a matrix and second ligand, has been developed. Through the incorporation of BA‐PIL with the complex [Ln(hfa)3] (hfa=hexafluoroacetylacetone) as an emitting precursor, significant luminescence improvement was achieved in the obtained hybrid materials. Confinement of the lanthanide(III) complexes within the rigid chains of the polymer, together with replacement of the coordinated water molecules, are believed to be ascribed to the enhanced optical properties.  相似文献   

3.
4.
A series of low‐melting‐point salts with hexakisdicyanonitrosomethanidolanthanoidate anions has been synthesised and characterised: (C2mim)3[Ln(dcnm)6] ( 1 Ln ; 1 Ln = 1 La , 1 Ce , 1 Pr , 1 Nd ), (C2C1mim)3[Pr(dcnm)6] ( 2 Pr ), (C4C1pyr)3[Ce(dcnm)6] ( 3 Ce ), (N1114)3[Ln(dcnm)6] ( 4 Ln ; 4 Ln = 4 La , 4 Ce , 4 Pr , 4 Nd , 4 Sm , 4 Gd ), and (N1112OH)3[Ce(dcnm)6] ( 5 Ce ) (C2mim=1‐ethyl‐3‐methylimidazolium, C2C1mim=1‐ethyl‐2,3‐dimethylimidazolium, C4C1py=N‐butyl‐4‐methylpyridinium, N1114=butyltrimethylammonium, N1112OH=2‐(hydroxyethyl)trimethylammonium=choline). X‐ray crystallography was used to determine the structures of complexes 1 La , 2 Pr , and 5 Ce , all of which contain [Ln(dcnm)6]3? ions. Complexes 1 Ln and 2 Pr were all ionic liquids (ILs), with complex 3 Ce melting at 38.1 °C, the lowest melting point of any known complex containing the [Ln(dcnm)6]3? trianion. The ammonium‐based cations proved to be less suitable for forming ILs, with complexes 4 Sm and 4 Gd being the only salts with the N1114 cation to have melting points below 100 °C. The choline‐containing complex 5 Ce did not melt up to 160 °C, with the increase in melting point possibly being due to extensive hydrogen bonding, which could be inferred from the crystal structure of the complex.  相似文献   

5.
Dual‐photosensitized stable EuΙΙΙ and TbΙΙΙ complexes, namely [Eu(dpq)(tfnb)3] ( 1 ) and [Tb(dpq)(tfnb)3] ( 2 ), in which dpq=dipyrido[3,2‐d:2′,3′‐f]quinoxaline and Htfnb=4,4,4‐trifluoro‐1‐(2‐napthyl)‐1,3‐butanedione, were designed as bioimaging and light‐responsive therapeutic agents. Their X‐ray structures, photophysical properties, biological interactions, photoinduced DNA damage, photocytotoxicity, and cellular uptake properties were studied. Discrete mononuclear complexes adopt an eight‐coordinated {LnN2O6} distorted square antiprism geometry with bidentate N,N‐donor dpq and O,O‐donor tfnb ligands. The designed probes have the advantage of dual‐sensitizing antennae (dpq, Htfnb) to modulate their desirable optical properties for cellular imaging and light‐responsive intracellular damage. The remarkable photostability, absence of inner‐sphere water (q<1), and longer excited‐state lifetimes of the complexes make them suitable as cellular‐imaging probes. The dpq 3T state is well located energetically to allow efficient energy transfer (ET) to the emissive 5D0 and 5D4 states of EuΙΙΙ and TbΙΙΙ. This leads to higher quantum yields (φ=0.15–0.20) in aqueous media and makes these compounds suitable cellular‐imaging probes. The complexes display significant binding ability toward DNA and bovine serum albumin (K≈105 m ?1). They effectively cleave supercoiled DNA to its nicked circular form at λ=365 nm through photoredox pathways. The cellular internalization studies showed cytosolic and nuclear localization. The remarkable photocytotoxicity of these probes offers a strategy towards developing photoresponsive LnΙΙΙ probes as cellular‐imaging and phototherapeutic agents.  相似文献   

6.
A series of nitrile‐functionalized ionic liquids were found to exhibit temperature‐dependent miscibility (thermomorphism) with the lower alcohols. Their coordinating abilities toward cobalt(II) ions were investigated through the dissolution process of cobalt(II) bis(trifluoromethylsulfonyl)imide and were found to depend on the donor abilities of the nitrile group. The crystal structures of the cobalt(II) solvates [Co(C1C1CNPyr)2(Tf2N)4] and [Co(C1C2CNPyr)6][Tf2N]8, which were isolated from ionic‐liquid solutions, gave an insight into the coordination chemistry of functionalized ionic liquids. Smooth layers of cobalt metal could be obtained by electrodeposition of the cobalt‐containing ionic liquids.  相似文献   

7.
The hexanitratolanthanate anion (La(NO3)63?) is an interesting symmetric anion suitable to construct the component of water‐free rare‐earth‐metal ionic liquids. The syntheses and structural characterization of eleven lanthanum nitrate complexes, [Cnmim]3[La(NO3)6] (n=1, 2, 4, 6, 8, 12, 14, 16, 18), including 1,3‐dimethylimidazolium hexanitratolanthanate ([C1mim]3[La(NO3)6], 1 ), 1‐ethyl‐3‐methylimidazolium hexanitratolanthanate ([C2mim]3[La(NO3)6], 2 ), 1‐butyl‐3‐methylimidazolium hexanitratolanthanate ([C4mim]3[La(NO3)6], 3 ), 1‐isobutyl‐3‐methylimidazolium hexanetratolanthanate ([isoC4mim]3[La(NO3)6], 4 ), 1‐methyl‐3‐(3′‐methylbutyl)imidazolium hexanitratolanthanate ([MC4mim]3[La(NO3)6], 5 ), 1‐hexyl‐3‐methylimidazolium hexanitratolanthanate ([C6mim]3[La(NO3)6], 6 ), 1‐methyl‐3‐octylimidazolium hexanitratolanthanate ([C8mim]3[La(NO3)6], 7 ), 1‐dodecyl‐3‐methylimidazolium hexanitratolanthanate ([C12mim]3[La(NO3)6], 8 ), 1‐methyl‐3‐tetradecylimidazolium hexanitratolanthanate ([C14mim]3[La‐(NO3)6], 9 ), 1‐hexadecyl‐3‐methylimid‐azolium hexanitratolanthanum ([C16dmim]3[La(NO3)6], 10 ), and 1‐methyl‐3‐octadecylimidazolium hexanitratolanthanate ([C18mim]3[La(NO3)6], 11 ) are reported. All new compounds were characterized by 1H and 13C NMR, and IR spectroscopy as well as elemental analysis. The crystal structure of compound 1 was determined by using single‐crystal X‐ray diffraction, giving the following crystallographic information: monoclinic; P21/c; a=15.3170 (3), b=14.2340 (2), c=13.8954(2) Å; β=94.3453(15)°, V=3020.80(9) Å3, Z=4, ρ=1.764 g cm?3. The coordination polyhedron around the lanthanum ion is rationalized by six nitrate anions with twelve oxygen atoms. No hydrogen‐bonding network or water molecule was found in 1 . The thermodynamic stability of the new complexes was investigated by using thermogravimetric analysis (TGA). The water‐free hexanitratolanthanate ionic liquids are thermal and moisture stable. Four complexes, namely complexes 8 – 11 , were found to be ionic liquid crystals by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). They all present smectic A liquid‐crystalline phase.  相似文献   

8.
Hypergolic ionic liquids (ILs) have shown a great promise as viable replacements for toxic and volatile hydrazine derivatives used as propellant fuels, and hence, have attracted increasing interest over the last decade. To take advantage of the reactivity and high energy density of the azido group, a family of low‐cost and easily prepared azide‐functionalized cation‐based ILs, including fuel‐rich anions, such as nitrate, dicyanamide, and nitrocyanamide anions, were synthesized and characterized. All the dicyanamide‐ and nitrocyanamide‐based ILs exhibited spontaneous combustion upon contact with 100 % HNO3. The densities of these hypergolic ILs varied in the range 1.11–1.29 g cm?3, and the density‐specific impulse, predicted based on Gaussian 09 calculations, was between 289.9 and 344.9 s g cm?3. The values of these two key physical properties are much higher than those of unsymmetrical dimethylhydrazine (UDMH). Among the studied compounds, compound IL‐3b, that is, 1‐(2‐azidoethyl)‐1‐methylpyrrolidin‐1‐ium dicyanamide, shows excellent integrated properties including the lowest viscosity (30.9 M Pa s), wide liquid operating range (?70 to 205 °C), shortest ignition‐delay time (7 ms) with 100 % HNO3, and superior density specific impulse (302.5 s g cm?3), suggesting promising applications with potential as bipropellant formulations.  相似文献   

9.
Obtaining π‐conjugated room temperature ionic liquids (RTILs) is difficult because of the relatively strong π–π interaction among the π‐moieties. Existing strategies by using bulky counterions greatly hindered further property optimization and potential applications of these intriguing functional fluids through simple ion exchange. Herein, four naphthalene‐functionalized, π‐conjugated RTILs with small counterions (Br?) have been facilely synthesized with high yields. Our strategy is to attach branched alkyl chains to the cationic backbone of the target compounds ( 2 a – d ), which effectively tune inter‐ and intramolecular interactions. Compounds 2 a – d have satisfactory thermal stability (up to 300 °C) and low melting points (<?19 °C). Rheological measurements revealed the fluid character of 2 a – d , whose viscosity decrease with the increase of the alkyl chain length and temperature. The presence of the π‐conjugated naphthalene moiety imparts 2 a – d photoluminescent properties in bulk solutions. Moreover, the absence of strong π–π stacking among the naphthalene units in solvent‐free states enables them to be used as a new generation of photoluminescent inks.  相似文献   

10.
11.
Two new diglycolamide‐based task‐specific ionic liquids (DGA? TSILs) were evaluated for the extraction of actinides and lanthanides from acidic feed solutions. These DGA? TSILs were capable of exceptionally high extraction of trivalent actinide ions, such as Am3+, and even higher extraction of the lanthanide ion, Eu3+ (about 5–10 fold). Dilution of the DGA? TSILs in an ionic liquid, C4mim+ ? NTf2?, afforded reasonably high extraction ability, faster mass transfer, and more efficient stripping of the metal ion. The nature of the extracted species was studied by slope analysis, which showed that the extracted species contained one NO3? anion, along with the participation of two DGA? TSIL molecules. Time‐resolved laser fluorescence spectroscopy (TRLFS) analysis showed a strong complexation with no inner‐sphere water molecule in the EuIII? DGA? TSIL complexes in the presence and absence of C4mim+ ? NTf2? as the diluent. The very high radiolytic stability of DGA? TSIL 6 makes it one of the most‐efficient solvent systems for the extraction of actinides under acidic feed conditions.  相似文献   

12.
Several ionic liquids (ILs) based on complex manganate(II) anions with chloro, bromo, and bis(trifluoromethanesulfonyl)amido (Tf2N) ligands have been synthesized. As counterions, n‐alkyl‐methylimidazolium (Cnmim) cations of different chain length (alkyl=ethyl (C2), propyl (C3), butyl (C4), hexyl (C6)) were chosen. Except for the 1‐hexyl‐3‐methylimidazolium ILs, all of the prepared compounds could be obtained in a crystalline state at room temperature. However, each of the compounds displayed a strong tendency to form a supercooled liquid. Generally, solidification via a glass transition took place below ?40 °C. Consequently, all of these compounds can be regarded as ionic liquids. Depending on the local coordination environment of Mn2+, green (tetrahedrally coordinated Mn2+) or red (octahedrally coordinated Mn2+) luminescence emission from the 4T(G) level is observed. 1 The local coordination of the luminescent Mn2+ centre has been unequivocally established by UV/Vis as well as Raman and IR vibrational spectroscopies. Emission decay times measured at room temperature in the solid state (crystalline or powder) were generally a few ms, although, depending on the ligand, values of up to 25 ms were obtained. For the bromo compounds, the luminescence decay times proved to be almost independent of the physical state and the temperature. However, for the chloro‐ and bis(trifluoromethanesulfonyl)amido ILs, the emission decay times were found to be dependent on the temperature even in the solid state, indicating that the measured values are strongly influenced by nuclear motion and the vibration of the atoms. In the liquid state, the luminescence of tetrahedrally coordinated Mn2+ could only be observed when the tetrachloromanganate ILs were diluted with the respective halide ILs. However, for [C3mim][Mn(Tf2N)3], in which Mn2+ is in an octahedral coordination environment, a weak red emission from the pure compound was found even in the liquid state at elevated temperatures.  相似文献   

13.
周剑伟 《分子催化》2011,25(2):157-165
合成了三类磺酸功能化离子液体,通过STA、DSC-TG、UV-Vis、运动粘度/密度计等手段考察了离子液体的热力学性质、酸度、粘度和密度等理化性质,发现离子液体阴阳离子的结构对这些理化性质有不同程度的影响,并对离子液体的结构与理化性质变化关系进行初步探讨.  相似文献   

14.
During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis{(trifluoromethyl)sulfonyl}imide, [NTf2]? anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window, along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity, and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices.  相似文献   

15.
Based on the strand-like coordination polymer (CP) type 1[Ln(BSB)3(py)2], [BSB]=bis-salicylatoborate anion, mixed Eu/Tb-containing compounds of the constitution 1[EuxTb1−x(BSB)3(py)2] were synthesised ionothermally for a phase width of (x=0.25–0.75) and characterized regarding structure and optical properties. Previously, known only for other lanthanides, the mixed 1D−Eu/Tb-CPs show excellent options for statistic replacement of the Ln-cations during synthesis yielding solid solutions. The products are highly luminescent, with the chromaticity being a direct function of the amount of the respective Ln-ions. Corresponding to an overall addition of emission intensities, the green Tb3+ emission and the red Eu3+ emission allow for a chromaticity control that also includes yellow emission. Control of the luminescence colour renders them suitable examples of the versatility of statistic replacement of metal ions in coordination chemistry. In addition, crystallization of [EMIm]2[YCl5(py)] illuminates possible other products of the ionothermal reactions of [EMIm][BSB] with LnCl3 constituted by components not being part of the main CPs.  相似文献   

16.
The synthesis and characterization of several compounds representing a new class of multitask‐specific phosphonium ionic liquids that contain a maleimide functionality is reported. The maleimide moiety of the ionic liquid (IL) is shown to undergo Michael‐type additions with substrates containing either a thiol or amine moiety, thus, serving as a template to introduce wide structural diversity into the IL. Multitask‐specific ILs are accessible by reaction of the maleimide with Michael donors that are capable of serving some function. As a model example to illustrate this concept, a redox active ferrocenyl thiol was incorporated and examined by cyclic voltammetry. Because the maleimide moiety is highly reactive to additions, the task‐specific ionic liquids (TSILs) are prepared as the furan‐protected Diels–Alder maleimide. The maleimide moiety can then be liberated when required by simple heating.  相似文献   

17.
Functionalized ionic liquids are a subclass of ionic liquids that are tailored for a specific application. Structural characterization in both solid and liquid phases is central to understanding their physical properties. Here, we used ultralow‐frequency Raman spectroscopy, which can measure Raman spectra down to approximately 5 cm?1, to study the structures and physical properties of 1‐(4‐cyanobenzyl)‐3‐methylimidazolium salts with five different anions. A comparison of the observed low‐frequency Raman spectral patterns enabled us to predict the crystal symmetry of one of the synthesized salts for which single‐crystal X‐ray diffraction data were unobtainable. Real‐time tracking of the low‐frequency Raman spectral changes during melting revealed peak shifts indicative of different degrees of microscopic heterogeneity in the ionic liquids. The results show that our method provides a facile means that is complementary to X‐ray crystallography, for obtaining structural information of ionic liquids.  相似文献   

18.
Homodinuclear lanthanide complexes (Ln=La, Eu, Gd, Tb, Yb and Lu) derived from a bis‐macrocyclic ligand featuring two 2,2′,2′′‐(1,4,7,10‐tetraazacyclododecane‐1,4,7‐triyl)triacetic acid chelating sites linked by a 2,6‐bis(pyrazol‐1‐yl)pyridine spacer (H2L3) were prepared and characterized. Luminescence lifetime measurements recorded on solutions of the EuIII and TbIII complexes indicate the presence of one inner‐sphere water molecule coordinated to each metal ion in these complexes. The overall luminescence quantum yields were determined (?=0.01 for [Eu2(L3)] and 0.50 for [Tb2(L3)] in 0.01 M TRIS/HCl, pH 7.4; TRIS=tris(hydroxymethyl)aminomethane), pointing to an effective sensitization of the metal ion by the bispyrazolylpyridyl unit of the ligand, especially with Tb. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd2(L3)] are characteristic of slowly tumbling systems, showing a low‐field plateau and a broad maximum around 30 MHz. This suggests the occurrence of aggregation of the complexes giving rise to slowly rotating species. A similar behavior is observed for the analogous GdIII complex containing a 4,4′‐dimethyl‐2,2′‐bipyridyl spacer ([Gd2(L1)]). The relaxivity of [Gd2(L3)] recorded at 0.5 T and 298 K (pH 6.9) amounts to 13.7 mM ?1 s?1. The formation of aggregates has been confirmed by dynamic light scattering (DLS) experiments, which provided mean particle sizes of 114 and 38 nm for [Gd2(L1)] and [Gd2(L3)], respectively. TEM images of [Gd2(L3)] indicate the formation of nearly spherical nanosized aggregates with a mean diameter of about 41 nm, together with some nonspherical particles with larger size.  相似文献   

19.
A series of bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) with classical as well as mildly functionalized cations was prepared and their viscosities and conductivities were determined as a function of the temperature. Both were analyzed with respect to Arrhenius, Litovitz and Vogel–Fulcher–Tammann (VFT) behaviors, as well as in the context of their molecular volume (Vm). Their viscosity and conductivity are highly correlated with Vm/T or related expressions (R2≥0.94). With the knowledge of Vm of new cations, these correlations allow the temperature‐dependent prediction of the viscosity and conductivity of hitherto unknown, non‐ or mildly functionalized ILs with low error bars (0.05 and 0.04 log units, respectively). The influence of the cation structure and mild functionalization on the physical properties was studied with systematically altered cations, in which Vm remained similar. The To parameter obtained from the VFT fits was compared to the experimental glass temperature (Tg) and the Tg/To ratio for each IL was calculated using both experimental values and Angell’s relationship. With Walden plots we investigated the IL ionicity and interpreted it in relation to the cation effects on the physical IL properties. We checked the validity of these Vm/T relations by also including the recently published variable temperature viscosity and conductivity data of the [Al(ORF)4]? ILs with RF=C(H)(CF3)2 (error bars for the prediction: 0.09 and 0.10 log units, respectively).  相似文献   

20.
Recent years, crown ethers have been used in many fields, including phase transfer catalysis, chromatography stationary phase, ionselective electrode, and concentration of metal ions, etc1.. However, the toxicity of free crown ethers makes them unsuitable for industrial use2. Introduction of a crown ether as a functional group to functionalized ionic liquids has been reported3. These functionalized ionic liquids will combine the excellent properties of crown ether and ionic liquids without los…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号