首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.  相似文献   

2.
Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.  相似文献   

3.
The presence of superfluidity in neutron stellar interiors modifies free precession frequencies. The effect is particularly large if vortices are pinned to the stellar crust, in which case frequencies are bounded from below by ~ψΩ, where ψ is the ratio of pinned superfluid moment of inertia to stellar moment of inertia, and Ω is half the superfluid vorticity.  相似文献   

4.
We show that normal-fluid eddies in turbulent helium II polarize the tangle of quantized vortex lines present in the flow, thus inducing superfluid vorticity patterns similar to the driving normal-fluid eddies. We also show that the polarization is effective over the entire inertial range. The results help explain the surprising analogies between classical and superfluid turbulence which have been observed recently.  相似文献   

5.
We argue that turbulence in superfluids is governed by two dimensionless parameters. One of them is the intrinsic parameter q which characterizes the friction forces acting on a vortex moving with respect to the heat bath, with q?1 playing the same role as the Reynolds number Re=UR/ν in classical hydrodynamics. It marks the transition between the “laminar” and turbulent regimes of vortex dynamics. The developed turbulence described by Kolmogorov cascade occurs when Re?1 in classical hydrodynamics, and q?1 in superfluid hydrodynamics. Another parameter of superfluid turbulence is the superfluid Reynolds number Res=UR/κ, which contains the circulation quantum κ characterizing quantized vorticity in superfluids. This parameter may regulate the crossover or transition between two classes of superfluid turbulence: (i) the classical regime of Kolmogorov cascade where vortices are locally polarized and the quantization of vorticity is not important; (ii) the quantum Vinen turbulence whose properties are determined by the quantization of vorticity. A phase diagram of the dynamical vortex states is suggested.  相似文献   

6.
We study a two-phase sample of superfluid 3He where vorticity exists in one phase (3He-A) but cannot penetrate across the interfacial boundary to a second coherent phase (3He-B). We calculate the bending of the vorticity into a surface vortex sheet on the interface and solve the internal structure of this new type of vortex sheet. The compression of the vorticity from three to two dimensions enforces a structure which is made up of 1 / 2-quantum units, independently of the structure of the source vorticity in the bulk. These results are consistent with our NMR measurements.  相似文献   

7.
We estimate the density of vorticity near a field emitter in superfluid helium, and discuss the implications for experiments which employ field emission characteristics to detect the appearance of a single nearly vortex in a rotating vessel.  相似文献   

8.
The dynamic behavior of a Fermi gas confined in a deformed trap rotating at low angular velocity is investigated in the framework of hydrodynamic theory. The differences exhibited by a normal gas in the collisional regime and a superfluid are discussed. Special emphasis is given to the collective oscillations excited when the deformation of the rotating trap is suddenly removed or when the rotation is suddenly stopped. The presence of vorticity in the normal phase is shown to give rise to precession and beating phenomena which are absent in the superfluid phase.  相似文献   

9.
We report a transition in the vorticity generated by a grid moving in the B phase of superfluid 3He at T相似文献   

10.
It is well known that superfluids respond to rotation by forming vortex lines. It has been recently discovered that a different type of state consisting of a vortex sheet, instead of lines, can be created in the A phase of superfluid 3He. This paper presents an introduction to the vortex sheet. We first discuss 4He, where a vortex sheet is unstable. The way to realize a stable sheet in 3He-A is called a vortex soliton. It consists of a topologically stable domain wall to which nonsingular vorticity is bound. The vortex soliton has been observed by nuclear magnetic resonance, and its most prominent experimental properties are explained. The macroscopic shape of the sheet and the superfluid flow in a rotating container are discussed.  相似文献   

11.
In isotropic macroscopic quantum systems vortex lines can be formed while in anisotropic systems also vortex sheets are possible. Based on measurements of superfluid 3He-A, we present the principles which select between these two competing forms of quantized vorticity: sheets displace lines if the frequency of the external drive exceeds a critical limit. The resulting topologically stable state consists of multiple vortex sheets and has much faster dynamics than the state with vortex lines.  相似文献   

12.
When a cylindrical container filled with superfluid 3He---A is rotated around its symmetry axis, several different configurations of quantized vorticity are possible: which of them will be preferred depends on the specifics how the rotating state is formed. The most unusual is the vortex sheet, a domain wall in the order parameter texture into which vortex lines are confined. This metastable structure has the lowest critical velocity of formation if a domain wall with the appropriate orientation is already present in the container. In this case the vortex sheet becomes the preferred rotating state which provides the solid-body rotation of the superfluid component on an averaged scale. Its presence can be identified from the cw NMR spectrum which samples the order parameter texture. Here the experimental properties of the vortex sheet are reviewed, as deduced from NMR measurements.  相似文献   

13.
We present the first observation of substantial persistent flow in superfluid 3He-A in thick simply connected slabs in a zero magnetic field, but only in l textures with domain walls. The flow is induced in a rotating cryostat using a torsional oscillator as a probe. The hysteretic dependences of the trapped vorticity on the maximal angular velocity of rotation are fairly universal for different densities of domain walls and slab thicknesses. A model of a critical state set by either the critical velocity for vortex nucleation or pinning strength explains all observations.  相似文献   

14.
The first realization of instabilities in the shear flow between two superfluids is examined. The interface separating the A and B phases of superfluid 3He is magnetically stabilized. With uniform rotation we create a state with discontinuous tangential velocities at the interface, supported by the difference in quantized vorticity in the two phases. This state remains stable and nondissipative to high relative velocities, but finally undergoes an instability when an interfacial mode is excited and some vortices cross the phase boundary. The measured properties of the instability are consistent with the classic Kelvin-Helmholtz theory when modified for two-fluid hydrodynamics.  相似文献   

15.
Spectacular features are observed on the velocity-force characteristics of a vibrating wire resonator in superfluid 3He-B at ultralow temperatures. Both plateaus and discontinuities are seen in the characteristics. The plateaus seem to have two separate critical velocities where first some "event" occurs, which causes the wire to lose energy and slow down, followed by a second lower critical velocity where the event decouples. It is suggested that these events are due to vortex-loop creation at protuberances on the vibrating wire. This opens up the possibility of controlling the creation of vorticity through specially prepared protuberances.  相似文献   

16.
This Letter emphasizes that nonlinear rotational or diamagnetic susceptibility is characteristic of Bose fluids above their superfluid T(C)'s. For sufficiently slow rotation or, for superconductors, weak B fields, this amounts to an incompressible response to vorticity. The cause is that there are terms missing in the conventionally accepted model Hamiltonian for quantized vortices in the Bose fluid. The resulting susceptibility can account for recent observations of Chan et al. [Nature (London) 427, 225 (2004); Science 305, 1941 (2004)] on solid He and Ong et al. [Europhys. Lett. 72, 451 (2005) on cuprate superconductors.  相似文献   

17.
Systematic examinations are carried out experimentally about the contribution of background vorticity distributions (BGVD's) to the spontaneous formation and decay of ordered arrays (vortex crystals) composed of strong vortices (clumps) by using a pure-electron plasma. It is found that the BGVD level needs to be higher for an increasing number of clumps to form vortex crystals and that the number of the clumps constituting the crystal decreases in time as proportional to gamma lnt in contrast to proportional to t (-xi) with xi approximately 1 as accepted well in turbulence models. The decay rate gamma increases with the BGVD level. The observed configurations of the clumps cover the theoretically predicted catalogue of vortex arrays in superfluid helium, suggesting a possible relaxation path of the crystal states.  相似文献   

18.
拓扑超流态是一种奇异物质态,它的内部受能隙保护,而在其系统边缘却可以容纳无能隙的Majorana 费米子。由于该粒子满足非阿贝尔统计,并且受拓扑保护具有良好的稳定性,用它 们携带量子化的信息,可以用于拓扑量子计算的研究。近年来,理论工作预测了各类系统中可能 存在的拓扑超流态。我们首先介绍了在各类光晶格模型中的拓扑超流, 光晶格的超冷原子具有良 好的可控性与普适性,是实现拓扑超流的理想模型系统。接下来我们介绍了自旋轨道耦合调控下 的拓扑超流,自旋轨道耦合效应是诱导拓扑相的重要条件,并且人们已经在实验上合成了人工自 旋轨道耦合,这为实验上观测拓扑超流取得了突破性的进展。随着近年来实验技术的提高,曾经 难以在实验中观测的,被人们所忽略的拓扑Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) 超流相也 成为了人们研究的热点,因此我们接下来介绍了拓扑的FFLO 超流。此外,我们还介绍了拓扑超 流其他方面的进展,包括孤子引诱的拓扑超流、三组分的拓扑超流、大陈数的拓扑超流以及拓扑 超流临界温度的提高。在实验中,如何检测与实现拓扑超流,是其研究的目的及意义所在,因 此我们在文章的最后介绍了拓扑超流的识别与实现。  相似文献   

19.
The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid.In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines,which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms.  相似文献   

20.
We study bosonic atoms near a Feshbach resonance and predict that, in addition to standard normal and atomic superfluid phases, this system generically exhibits a distinct phase of matter: a molecular superfluid, where molecules are superfluid while atoms are not. We explore zero- and finite-temperature properties of the molecular superfluid (a bosonic, strong-coupling analog of a BCS superconductor), and study quantum and classical phase transitions between the normal, molecular superfluid, and atomic superfluid states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号