首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modifications of the photoelectron and C KVV Auger spectra during the long-term surface degradation of partially crystalline PVDF under simultaneous soft X-ray and electron followed by ion irradiation are reported. Deep radiative carbonization brings about the formation of carbynoid structures (chain-like carbon) in the surface, while the number of interchain cross-links is insignificant. As a result, the shape of the electron emission spectra of carbon in the carbonized sample essentially differs from that of graphite and PVDF. The ion bombardment of the carbonized sample destroys one-dimensional structure due to the formation of cross-links. Thus, carbon atoms transit into sp2-hybrid state and, therefore, the photoelectron and Auger spectra show features characteristic for microcrystalline graphite.  相似文献   

2.
Ultra-thin titanium and titanium nitride films on silicon substrate were obtained by ion beam sputtering of titanium target in vacuum and nitrogen atmosphere, using argon ions with energy of 5 keV and 15 μA target current. Elemental composition and chemical state of obtained films were investigated by X-ray photoelectron spectroscopy with using Mg-Kα X-ray radiation (photon energy 1253.6 eV). It was shown that it is possible to form both ultra-thin titanium films (sputtering in vacuum) and ultra-thin titanium nitride films (sputtering in nitrogen atmosphere) in the same temperature conditions. Photoelectron spectra of samples surface, obtained in different steps of films synthesis, detailed spectra of photoelectron emission from Si 2p, Ti 2p, N 1s core levels and also X-ray photoelectron spectra of Auger electrons emission are presented.  相似文献   

3.
The collision statistics of the energy dissipation of Auger and photoelectrons emitted from an amorphized Si(100) surface is studied by measuring the Si 2p photoelectron line as well as the first plasmon loss peak in coincidence with the Si-LVV Auger transition and the associated first plasmon loss. The Si 2p plasmon intensity decreases when measured in coincidence with the Si-LVV peak. If measured in coincidence with the Si-LVV plasmon the decrease is significantly smaller. The results agree quantitatively with calculations accounting for surface, volume, and intrinsic losses as well as elastic scattering in a random medium. In this way one can determine the average emission depth of individual electrons by means of Auger photoelectron coincidence spectroscopy, which therefore constitutes a unique tool to investigate interfaces at the nanoscale level.  相似文献   

4.
The coincidence L3 and M3 photoelectron spectroscopy (PES) main lines of Cu metal are calculated by a many-body theory. There is no peak-energy shift between the singles PES main line and the coincidence one. The asymmetric narrowing of the coincidence PES main line on the low kinetic energy (KE) side is very small. This is in accord with recent experimental findings. In Cu metal, the shakeup satellite intensity is small and the main-line satellite separation energy is much larger than the core–hole lifetime width. The interference via the final-state interaction is negligible. In the PES main line, the imaginary part of the self-energy by shakeup excitations, which is very small compared to the core–hole lifetime width, decreases very slowly in linear with photoelectron KE. The branching ratio of Auger decay of a single hole state then increases very slowly in linear with photoelectron KE so that the deviation of the coincidence PES main line from the singles one is very small. The 939 eV structure seen only in the coincidence L3 PES spectrum of Cu metal is attributed to the enhancement of the inelastic peak of a smaller energy loss due to electrons of a smaller average emission depth measured in coincidence with the elastic Auger peak. The structure will not be enhanced in the singles PES spectrum. The background subtraction in the coincidence spectrum cannot be the same as that in the singles one. Such consideration is necessary before we can conclude about the asymmetric narrowing on the low KE side. A unique capability of APECS by which one can determine the photoelectron KE dependent part of the imaginary part of the self-energy is pointed out.  相似文献   

5.
M. Chakraborty 《Pramana》1999,52(5):479-491
This paper shows that angular distribution of spin-unresolved Auger electrons emitted in the decay of a vacancy created by the absorption of a photon in a certain class of free, unpolarized and gaseous non-linear molecules is completely characterized by three, rather than by two well-known parameters. The presence of this additional third parameter gives rise to circular dichroic effect which varies as cosine of the angle made by the departing Auger electron with the direction of incidence of the circularly polarized radiation. Linear dichroic effect varies as the square of sine of the angle made by the direction of emission of Auger electron and the polar axis of the space frame. Linear and circular dichroism in the angular correlation between theE 1 photoelectron and Auger electron emitted sequentially from a molecule belonging to one of the 32 point groups has also been investigated.  相似文献   

6.
In this report we review recent progress in the understanding of the role of chirality in the multi-electron emission. A brief account of the chiral single-electron photoemission is given. In this case the chirality of the experimental set-up is brought about by an initial orientation of the target or/and by specifying a certain projection of the photoelectron spin. The dependence of the photoelectron spectrum on the chirality of the experiment is probed by changing the initial orientation of the target or by inverting the photoelectron spin projection. In a further section we envisage the direct transition of chiral electron pairs from an isotropic bound initial state into a double-continuum state following the absorption of a circularly polarised photon. We work out the necessary conditions under which the spectrum of the correlated photoelectron pair shows a chiral character, i.e. a dependence on the chirality of the exciting photon. The magnitude and the general behaviour of the chiral effects are estimated from simple analytical models and more elaborate numerical methods are presented for a more quantitative predictions. As a further example for the chiral multi-electron emission we study the photoelectron Auger-electron coincidence spectrum. The Auger hole is created by ionising a randomly oriented target by a circular polarised photon. We investigate how the helicity the photon is transferred to the emitted photoelectron pair. The theoretical findings are analysed and interpreted in light of recent experiments. In a final section we focus on the emission of correlated electrons where the initial state is already oriented, e.g. via optical pumping by circularly polarised light. The initial orientation of the atom is transferred to the continuum states following the ionisation of the target by low-energy electrons. We formulate and analyse the theoretical concepts for the transition of the screw sense of the initially bound atomic electron to the continuum electron pair. Numerical methods for the calculations of the cross-sections for the electron-impact ionisation of oriented atoms are presented and their results are contrasted against recent experimental data.  相似文献   

7.
A simplified model of Auger and photoelectron scattering in solids is presented. Within the framework of the model the relation between the distribution of backscattered primary electrons and Auger photoelectron distribution is obtained in terms of the geometric factor and the density of inelastic electron scattering probability. The new algorithm of spectrum background subtraction is formulated and applied to process the X-ray photoelectron and Auger spectra for a series of oxygen, fluorine, and copper compounds. It is shown that the method accuracy for the peak area measurements is better than 10%.  相似文献   

8.
Combined measurements of electron excited N4,5 Auger spectra and photoelectron emission on clean and oxidized Gd lead to a distinction between Auger lines originating from 4d → continuum and 4d → 4? resonance excitations. Several Auger structures are identified as due to the direct recombination of 4d94?8 states with the 4f and valence electrons. The shape of the most prominent Auger line for oxidized Gd agrees perfectly with the Fano profile of the 4? photoemission intensity.  相似文献   

9.
Fragmentation of the SF6 molecule upon F 1s excitation has been studied by resonant photoemission. The F atomiclike Auger line exhibits the characteristic Doppler profile that depends on the direction of the photoelectron momentum relative to the polarization vector of the radiation as well as on the photon energy. The measured Doppler profiles are analyzed by the model simulation that takes account of the anisotropy of the Auger emission in the molecular frame. The Auger anisotropy extracted from the data decreases with an increase in the F-SF5 internuclear distance.  相似文献   

10.
N.R Avery 《Surface science》1976,61(2):391-411
Fine structure in the N7 VV Auger spectra from clean W(100) and W(110) surfaces has been interpreted by Lander's band model for the doubly ionized final state. It is shown that the energies of the prominent emissions in the spectra are similar for the two surfaces and furthermore are consistent with the self convolution of a bulk density of states for tungsten. An additional feature in the spectrum from the W(100) surface has been attributed to emission from an intrinsic surface state at ?0.4 eV. The localization of this state at the surface was confirmed by its sensitivity to adsorbates (H2, CO, O2 and I2). During the interaction of these gases with the surface the Auger spectra always retained the features attributed to the bulk density of states which were modified only by a shift in the background intensity profile. New emission features in this part of the spectra were not seen except for the example of hydrogen adsorption when a single new emission could be seen on each of the two tungsten surfaces. However, each adsorbate produce either one (H2) or two (CO, O2 and I2) new emissions at lower energies which were attributed to emissions from new adsorbate derived levels which reside at energies below the prominent features of the tungsten valence band. The location of these new adsorbate levels is compared and contrasted with the equivalent ultraviolet photoelectron spectroscopic determinations.  相似文献   

11.
Ultrathin MgO films were grown on a W(1 1 0) substrate while metastable impact electron (MIES) and photoelectron (UPS) spectra were measured in situ; apart from the valence band emission, no additional spectral features were detected. The oxide surface was exposed to metal atoms (Cu, Pd) at RT. A comparison with the DOS extracted from first-principles DFT calculations shows that the metal-induced intensity developing above the top of the O 2p valence band in the UP spectra under Cu(Pd) exposure is caused by Cu 3d (Pd 4d) emission. The emission seen in the MIES spectra is attributed to the ionization of Cu 3d and 4s states of adsorbed neutral Cu atoms in an Auger process, Auger neutralization, involving two electrons from the surface, at least one of them from the metal adsorbate. The shape of the MIES spectra suggests metallic island growth even at the lowest studied exposures, which is supported by the first-principles calculations.  相似文献   

12.
We review recent work in the application of Auger and X-ray photoelectron diffraction at high electron kinetic energies to the problem of structure determination in ultrathin epitaxial overlayers. These closely-related techniques are based on the fact that outgoing Auger and photoelectrons from single-crystal specimens undergo elastic scattering and interference from near-neighbour atoms in the vicinity of the emitter. Such coherent diffraction leads to large intensity modulations as the detected emission direction is varied with respect to the crystal axes of the specimen. The measured modulations are readily interpreted by means of model quantum mechanical scattering calculation in which atomic coordinates in the epitaxial film are systematically varied. Such analyses provide several kinds of useful information, including growth modes accompanying heteroepitaxy, structural details of alloy and compound formation, and quantitative determination of tetragonal distortion at lattice-mismatched heterointerfaces. After a discussion of experimental design and theoretical modelling, we present several case studies of heteroepitaxial growth involving dissimilar materials. In addition, we review the new subfield of Auger and photoelectron holography, and discuss the current state-of-art in both data acquisition and Fourier inversion of experimental data for directly obtaining structural parameters.  相似文献   

13.
Ten years ago, NPL developed an infrastructure for calibrating the intensity response functions of electron spectrometers for Auger electron and for X-ray photoelectron spectroscopies. Two software systems were developed: one for Auger electron spectrometers or for Auger electron and X-ray photoelectron spectrometers combined, and one for X-ray photoelectron spectrometers on their own; the latter being applied if no suitable electron gun is available. The system for Auger electron and X-ray photoelectron spectrometers combined has been used regularly to calibrate the Metrology Spectrometer II at NPL and experience shows that this gives an instrumental intensity consistency of 0.4% over 10 years. Evaluations have not previously been reported at this level. The system for Auger electron and X-ray photoelectron spectrometers combined is used here in preference to the system solely for X-ray photoelectron spectrometers since it is more robust to the sample condition and can be used over a wider energy range. These issues, and how observed variations in the instrument intensity response may arise, are explained.  相似文献   

14.
Resonant excitation or resonant electron scattering is a two step process in which Auger rates are involved in both steps. First an electron is captured into a bound state and a bound electron is excited (inverse Auger effect). Then an Auger transition leads to the emission of the electron from the ion. The corresponding cross-sections are very sensitive to the Auger rates and allow a detailed study of the Breit interaction which is a current-current contribution to the static electron-electron interaction. The contribution of the Breit interaction to the cross-section of resonant excitation on hydrogen-like uranium ions is discussed and shown that it is roughly twice as large as in the case of dielectronic recombination. Received 4 August 1999 and Received in final form 29 September 1999  相似文献   

15.
KL2L3(1D2) Auger and 1s photoelectron energies have been measured for molecular hydrides isoelectronic with Argon (HCl, H2S, PH3 and SiH4). In addition a detailed comparison of Auger and photoelectron shifts in a series of phosphorus halides (vs phosphine) has been undertaken using additional P2p binding energies. The potential model is better able to predict 1s binding energy shifts with either ground state or relaxation corrected models than the 2p shifts. These latter values seem also to be reduced by shielding effects. In general, fluorides are better predicted than chlorides. Auger shifts correlate linearly(but not in a 1:1 relationship) with 1s photoelectron shifts throughout the isoelectronic series and also in the case of the phosphorus fluorides and phosphine. The two potential models, however, provide poor prediction of Auger shifts.  相似文献   

16.
X-ray photoelectron spectra were observed on the quick-frozen aqueous solutions of sodium halides. The separation between Na KLL Auger peak and Na 1s peak was found to be different between the quick-frozen aqueous solution and the crystal of the salt, while the separation of Na 1 s peak and a core-electron peak of anion little differs between the two states.Discussion is given on the extra-atomic relaxation energy and other energy terms which are affecting the shifts of KLL Auger and core-electron peaks.  相似文献   

17.
Charging mechanisms of trapped, element-selectively excited free SiO2 nanoparticles by soft x rays are reported. The absolute charge state of the particles is measured and the electron emission probability is derived. Changes in electron emission processes as a function of photon energy and particle charge are obtained from the charging current. This allows us to distinguish contributions from primary photoelectrons, Auger electrons, and secondary electrons. Processes leading to no change in charge state after absorption of x-ray photons are identified. O 1s-excited SiO2 particles of low charge state indicate that the charging current follows the inner-shell absorption. In contrast, highly charged SiO2 nanoparticles are efficiently charged by resonant Auger processes, whereas direct photoemission and normal Auger processes do not contribute to changes in particle charge. These results are discussed in terms of an electrostatic model.  相似文献   

18.
The concentration and chemical state of copper in the subsurface region of Cu/SiO2 composite films obtained by simultaneous magnetron sputtering from two sources (Cu and SiO2) are determined by x-ray photoelectron spectroscopy (XPS). It is established that copper in the as-grown film is primarily in the form of unoxidized atoms dispersed in a SiO2 matrix. Annealing of the film results in practically no oxidation, but about 70% of the copper atoms condense into metallic clusters with sizes below 10 Å in the subsurface region and about 50 Å in the bulk of the film. The changes in the binding energy of core electrons, and especially in the energies of Auger electrons, are so large in this situation that photoelectron and Auger spectroscopy are efficient methods for monitoring the chemical state of this composite material.  相似文献   

19.
X-ray photoelectron spectra of the 2p levels of Co, Ni, and Cu compounds are examined concurrently with their L3M4,5M4,5 Auger spectra. A correlation is established between the presence or absence of Auger satellites with the presence or absence of photoelectron shake-up satellites for Co and Ni compounds. The correlation is less clear for cupric compounds. We propose the mechanism of Auger shake-up as a plausible interpretation for the observed behavior of these Auger satellites.  相似文献   

20.
Auger and direct electron spectra from Zn, ZnO, Ga and Ga2O3 have been studied with X-ray photoelectron spectroscopy (ESCA). The chemical shift between zinc electron binding energies in Zn and ZnO is very small, whereas the zinc Auger electron signals are separated by 4.3 eV. In gallium, the oxide and metal signals are separated by 1.9 eV, but the Auger electron energy shift is three times as large. Thus the Auger signals are more sensitive to the chemical environment than the direct electron signals, which is the same relation as earlier observed for copper and copper oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号