首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mixture of benzimidazole salts (2–7), Pd(OAc)2 and K2CO3 in DMF–H2O catalyzes the Suzuki–Miyaura cross‐coupling reactions promoted by microwave irradiation resulting in high yield within a short time. In particular, the yield of the Suzuki–Miyaura reactions with aryl bromides was found to be nearly quantitative. The synthesized benzimidazole salts (2–7) were identified by 1H‐13C, NMR, IR spectroscopic methods and microanalysis. The molecular structure of 1 was determined by X‐ray crystallography. The antibacterial and antifungal activities of the novel benzimidazole derivatives (1–7) were also tested against standard strains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A mixture of bis‐benzimidazole salts ( 1–7 ), Pd(OAc)2 and K2CO3 in DMF ? H2O catalyzes, in high yield, the Suzuki and Heck cross‐coupling reactions assisted by microwave irradiation in a short time. In particular, the yields of the Heck and Suzuki reactions with aryl bromides were found to be nearly quantative. The synthesized bis‐benzimidazole salts ( 1 – 7 ) were identified by 1H? 13C NMR, IR spectroscopic methods and micro analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis of a novel benzimidazole derivative with a long‐chain‐ester substituent, namely methyl 8‐[4‐(1H‐benzimidazol‐2‐yl)phenoxy]octanoate, (3), is reported. Ester (3) shows evidence of aggregation in solution and weak gelation ability with toluene. The octan‐1‐ol solvate, methyl 8‐[4‐(1H‐benzimidazol‐2‐yl)phenoxy]octanoate octan‐1‐ol monosolvate, C22H26N2O3·C8H18O, (4), exhibits a four‐molecule hydrogen‐bonded motif in the solid state, with N—H…O hydrogen bonds between benzimidazole molecules and O—H…N hydrogen bonds between the octan‐1‐ol solvent molecules and the benzimidazole unit. The alkyl chains of the ester and the octan‐1‐ol molecules are in unfolded conformations. The phenylene ring is canted by 10.27 (6)° from the plane of the benzimidazole ring system. H…C contacts make up 20.7% of the Hirshfeld surface coverage. Weak C—H…π interactions involving the benzimidazole alkyl chain and three aromatic rings are observed.  相似文献   

4.
Nickel‐catalyzed Buchwald–Hartwig amination of pyrimidin‐2‐yl tosylates with indole and benzimidazole was achieved using Ni(dppp)Cl2 as catalyst, yielding a variety of novel C2‐substituted pyrimidine derivatives in good yields. This reaction proved to be tolerant of various pyrimidin‐2‐yl tosylates bearing either electron‐donating or electron‐withdrawing groups as well as nucleophiles including indole, benzimidazole and 1,2,4‐triazole. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A novel three‐dimensional framework of 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole dihydrate, C11H10N4·2H2O or L·2H2O, (I), in which L acts as both hydrogen‐bond acceptor and donor in the supramolecular construction with water, has been obtained by self‐assembly reaction of L with H2O. The two independent water molecules are hydrogen bonded alternately with each other to form a one‐dimensional infinite zigzag water chain. These water chains are linked by the benzimidazole molecules into a three‐dimensional framework, in which each organic molecule is hydrogen bonded by three water molecules. This study shows that the diversity of hydrogen‐bonded patterns plays a crucial role in the formation of the three‐dimensional framework. More significantly, as water molecules are important in contributing to the conformation, stability, function and dynamics of biomacromolecules, the infinite chains of hydrogen‐bonded water molecules seen in (I) may be a useful model for water in other chemical and biological processes.  相似文献   

6.
Molecules of 1,2‐bis(4‐bromophenyl)‐1H‐benzimidazole, C19H12Br2N2, (I), and 2‐(4‐bromophenyl)‐1‐(4‐nitrophenyl)‐1H‐benzimidazole, C19H12BrN3O2, (II), are arranged in dimeric units through C—H...N and parallel‐displaced π‐stacking interactions favoured by the appropriate disposition of N‐ and C‐bonded phenyl rings with respect to the mean benzimidazole plane. The molecular packing of the dimers of (I) and (II) arises by the concurrence of a diverse set of weak intermolecular C—X...D (X = H, NO2; D = O, π) interactions.  相似文献   

7.
A novel class of compounds bearing indole and benzimidazole rings was designed and easily synthesized from 2‐indolecarboxylic acid and o‐phenylenediamine. The catalytic system derived from a 2‐indolylbenzimidazole‐based ligand and Pd(OAc)2 in situ could lead to complete conversion of aryl bromides at 0.5 mol% Pd loading under mild reaction conditions. In the presence of a catalyst, sterically hindered biaryls were selectively generated in excellent yields by adjusting reaction parameters through the coupling of arylboronic acids with aryl halides. The efficiency of this reaction was demonstrated by its compatibility with various functional groups.  相似文献   

8.
A series of new semiconducting polymers based on 4,4‐dihexyl‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene, 2,2‐dihexyl‐2H‐benzimidazole, and thiophene units was synthesized. The polymers show good solubility at room temperature in organic solvents owing to long alkyl chain in new acceptor, 2,2‐dihexyl‐2H‐benzimidazole. The advantage of dihexyl‐2H‐benzimidazole compared to the benzothiadiazole is to improve the solubility of the polymer. It was found that these polymers can finely be tuned for photovoltaic application by adjusting the contents ratio of the dihexyl‐2H‐benzimidazole unit. The spectra of the solid films show absorption bands with maximum peaks in the range of 421–577 nm and the absorption onsets at 588–683 nm, corresponding to band gaps of 2.11–1.82 eV. The devices with PCPDTDTHBI‐1 :PC71BM showed an open‐circuit voltage (VOC) of 0.46 V, a short‐circuit current density (JSC) of 3.83 mA/cm2, and a fill factor of 0.36, giving a power conversion efficiency of 0.64%. Decrease of the dihexyl‐2H‐benzimidazole contents in the polymers induced red‐shift of the UV absorptions, and increased VOC and JSC values, to improve the efficiency of organic photovoltaics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
A number of novel benzimidazole salts were synthesized and their structures were determined using 1H NMR, 13C NMR and infrared spectroscopic techniques and elemental analysis. A catalyst system consisting of Pd(OAc)2 and copper nanoparticles in the presence of Cs2CO3 and incorporating the novel benzimidazole salts in poly(ethylene glycol) solvent significantly improved the yields of Sonogashira reactions between aryl halides and phenylacetylene under microwave irradiation in 10 min.  相似文献   

10.
In the current study, a novel and reusable biological urea based nano magnetic catalyst namely Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was designed and synthesized. The structure of the titled catalyst was fully characterized using several skills including Fourier transform infrared (FT‐IR) spectroscopy, energy dispersive X‐ray (EDX) analysis, X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo gravimetric analysis/differential thermal analysis (TG/DTG) and vibrating sample magnetometer (VSM). Then, the catalytic performance of Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was successfully inspected towards the multicomponent synthesis of 2‐amino‐3‐cyano pyridine derivatives through a vinylogous anomeric based oxidation pathway.  相似文献   

11.
Organometallic 5d6 Transition Metal Complexes of 1‐Methyl‐(2‐alkylthiomethyl)‐1H‐benzimidazole Ligands: Structures and Electrochemical Oxidation The complexes [(mmb)Re(CO)3Cl], [(mtb)Re(CO)3Cl], [(mmb)OsCl(Cym)](PF6) and [(Cym)OsCl(mtb)](PF6) where Cym = p‐cymene, mmb = 1‐methyl‐(2‐methylthiomethyl)‐1H‐benzimidazole and mtb = 1‐methyl‐(2‐tert‐butylthiomethyl)‐1H‐benzimidazole were synthesized and, except for the latter, structurally characterized. In comparison with other late transition metal compounds of these N‐S chelate ligands the rhenium(I) systems exhibit a balanced coordination to both N and S donor atoms. Anodic one‐electron oxidation produces EPR‐silent rhenium(II) states whereas the osmium(III) species [(mmb)OsCl(Cym)]2+ could be identified via EPR and UV/VIS spectroelectrochemistry.  相似文献   

12.
In the title compound, [Mn(C8H7O2)2(C12H9N3)], the manganese(II) centre is surrounded by three bidentate chelating ligands, namely, one 2‐(2‐pyridyl)benzimidazole ligand [Mn—N = 2.1954 (13) and 2.2595 (14) Å] and two p‐toluate ligands [Mn—O = 2.1559 (13)–2.2748 (14) Å]. It displays a severely distorted octahedral geometry, with cis angles ranging from 58.87 (4) to 106.49 (5)°. Intermolecular C—H...O hydrogen bonds between the p‐toluate ligands link the molecules into infinite chains, and every two neighbouring chains are further coupled by N—H...O and C—H...O hydrogen bonds between the 2‐(2‐pyridyl)benzimidazole and p‐toluate ligands, leading to an infinite ribbon‐like double‐chain packing mode. The complete solid‐state structure can be described as a three‐dimensional supramolecular framework, stabilized by these intermolecular hydrogen‐bonding interactions and possible C—H...π interactions, as well as stacking interactions involving the 2‐(2‐pyridyl)benzimidazole ligands.  相似文献   

13.
The title compounds, trans‐bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)bis(ethanol‐κO)cadmium(II), [Cd(C8H5N2O2)2(C2H6O)2], (I), and trans‐bis(1H‐benzimidazole‐κN3)bis(1H‐benzimidazole‐2‐carboxylato‐κ2N3,O)nickel(II), [Ni(C8H5N2O2)2(C7H6N2)2], (II), are hydrogen‐bonded supramolecular complexes. In (I), the CdII ion is six‐coordinated by two O atoms from two ethanol molecules, and by two O and two N atoms from two bidentate benzimidazole‐2‐carboxylate (HBIC) ligands, giving a distorted octahedral geometry. The combination of O—H...O and N—H...O hydrogen bonds results in two‐dimensional layers parallel to the ab plane. In (II), the six‐coordinated NiII atom, which lies on an inversion centre, shows a similar distorted octahedral geometry to the CdII ion in (I); two benzimidazole molecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N—H...O hydrogen bonds between pairs of HBIC anions connect adjacent NiII coordination units to form a one‐dimensional chain parallel to the a axis. Moreover, these one‐dimensional chains are further linked via N—H...O hydrogen bonds between HBIC anions and benzimidazole molecules to generate a three‐dimensional supramolecular framework. The two compounds show quite different supramolecular networks, which may be explained by the fact that different co‐ligands occupy the axial sites in the coordination units.  相似文献   

14.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

15.
In an endeavor to find a new class of antimicrobial agents, a series of novel substituted benzimidazole, benzoxazole, and benzothiazole derivatives 6 containing pyrazole moiety have been synthesized by reaction of 3‐aryl‐4‐formyl pyrazole 4 with substituted phenylenediamine or o‐aminophenol or o‐aminothiophenol 5 . Reaction of phenyl hydrazine or 2‐hydrazinopyridine 1 with substituted acetophenones 2 gave the corresponding hydrazones 3 , which on Vilsmeier–Haack reaction with POCl3–DMF gave substituted 3‐aryl‐4‐formyl pyrazoles 4 . All final compounds 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j , 6k were evaluated for in vitro antibacterial activities against Escherichia coli and Staphylococcus aureus strains and in vitro antifungal activity against Candida albicans and Aspergillus niger strains by using serial dilution method. The antimicrobial activities were expressed as the minimum inhibitory concentration in µg/mL. The compound containing benzimidazole and benzoxazole moiety gave better antibacterial and antifungal activities than benzothiazole compounds.  相似文献   

16.
1,3‐Bis(ethylamino)‐2‐nitrobenzene, C10H15N3O2, (I), and 1,3‐bis(n‐octylamino)‐2‐nitrobenzene, C22H39N3O2, (II), are the first structurally characterized 1,3‐bis(n‐alkylamino)‐2‐nitrobenzenes. Both molecules are bisected though the nitro N atom and the 2‐C and 5‐C atoms of the ring by twofold rotation axes. Both display intramolecular N—H...O hydrogen bonds between the amine and nitro groups, but no intermolecular hydrogen bonding. The nearly planar molecules pack into flat layers ca 3.4 Å apart that interact by hydrophobic interactions involving the n‐alkyl groups rather than by π–π interactions between the rings. The intra‐ and intermolecular interactions in these molecules are of interest in understanding the physical properties of polymers made from them. Upon heating in the presence of anhydrous potassium carbonate in dimethylacetamide, (I) and (II) cyclize with formal loss of hydrogen peroxide to form substituted benzimidazoles. Thus, 4‐ethylamino‐2‐methyl‐1H‐benzimidazole, C10H13N3, (III), was obtained from (I) under these reaction conditions. Compound (III) contains two independent molecules with no imposed internal symmetry. The molecules are linked into chains via N—H...N hydrogen bonds involving the imidazole rings, while the ethylamino groups do not participate in any hydrogen bonding. This is the first reported structure of a benzimidazole derivative with 4‐amino and 2‐alkyl substituents.  相似文献   

17.
We report a BF3‐mediated direct alkynylation of pyridines at C(2) by using a variety of alkynyllithium reagents (oxidative cross‐coupling). Moreover, we have developed a novel transition‐metal‐free cross‐coupling method between alkylmagnesium reagents and 4‐substituted pyridines, such as isonicotinonitrile and 4‐chloropyridine, by employing BF3?OEt2 as a promoter. The combination of these methods enabled us to efficiently prepare a range of di‐, tri‐, and tetrasubstituted pyridines.  相似文献   

18.
The title compound, poly[chlorido[μ4‐2,2′‐(2‐methylbenzimidazolium‐1,3‐diyl)diacetato]cadmium(II)], [Cd(C12H11N2O4)Cl]n, is an undulating two‐dimensional polymer consisting of a paddlewheel Cd2(CO2)4 cluster which lies on an inversion centre. These paddlewheel clusters act as four‐connected square building units interlinked via bridging zwitterionic dicarboxylate ligands into a corrugated layer which is consolidated by π–π interactions between benzene rings of benzimidazole groups. Neighbouring layers are further assembled via interlayer π–π interactions into a three‐dimensional supramolecular structure. The key feature of this study is the synthesis of a paddlewheel‐based polymer constructed with a novel multifunctional zwitterionic dicarboxylate ligand.  相似文献   

19.
The synthesis of 1H‐benzimidazol‐2‐yl‐1H‐pyrazole‐3,5‐diamines has been developed. Synthesized bisheteroaryls contain two privileged medicinal scaffolds, aminopyrazole and benzimidazole, with two diversity positions at N1 of benzimidazole and C3 of pyrazole, respectively. The three‐step synthesis includes the Mitsunobu N‐alkylation of benzimidazole and subsequent one‐pot formation of aminopyrazole involving substitution of methylthio groups with amine and hydrazine followed with final ring closure. Inhibitory activity toward cyclin‐dependent kinase 2/cyclin E and cytotoxicity against two cancer cell lines were evaluated for all novel pyrazoles. Two compounds showed modest cyclin‐dependent kinase inhibition activity and cytotoxicity against cancer cell lines K562 and MCF7.  相似文献   

20.
Three novel copper(II) complexes, [Cu(Gly‐l ‐Val)(HPBM)(H2O)]·ClO4·H2O ( 1 ), [Cu(Gly‐l ‐Val)(TBZ)(H2O)]·ClO4 ( 2 ) and [Cu(Gly‐l ‐Val)(PBO)(H2O)]·ClO4 ( 3 ) (Gly‐l ‐Val = glycyl‐l ‐valine anion, HPBM = 5‐methyl‐2‐(2′‐pyridyl)benzimidazole, TBZ = 2‐(4′‐thiazolyl)benzimidazole, PBO = 2‐(2′‐pyridyl)benzoxazole), have been prepared and characterized with elemental analyses, conductivity measurements as well as various spectroscopic techniques. The interactions of these copper complexes with calf thymus DNA were explored using UV–visible, fluorescence, circular dichroism, thermal denaturation, viscosity and docking analyses methods. The experimental results showed that all three complexes could bind to DNA via an intercalative mode. Moreover, the cytotoxic effects were evaluated using the MTT method, and the antimicrobial activity of these complexes was tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The results showed that the activities are consistent with their DNA binding abilities, following the order of 1 > 2 > 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号