首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of 3,3′,4,4′‐tetrahydro‐4,4′‐bibenzo[e][1,3]oxazine‐2,2′‐diones via reaction of salicylidendphenylhydrazone and triphosgene with the aid of low‐valent titanium reagent is described. This method has the advantages of accessible starting materials, good yields and short reaction time.  相似文献   

2.
Abstract

The reaction of thionyl chloride with amidines 2, derived from N-benzimidazol-2-yl imidates 1, leads to [1,2,4,6]thiatriazino[2,3-a][1,3]benzimidazol-1(2H)-one 3 in good yields. [1,3,5]Thiadiazino[3,4-a][1,3]benzimidazol-2-imine 4 was prepared by condensation of NaSCN with benzimidazol-2-yl imidate 1. The isolated compounds 3 and 4 were identified by spectroscopic methods including IR, 1H NMR, and 13C NMR as well as elemental analyses and MS of 3d and 4b.

GRAPHICAL ABSTRACT   相似文献   

3.
In the context of our aim of discovering new antitumor drugs among synthetic γ‐lactone‐ and γ‐lactam‐fused 1‐methylquinolin‐4(1H)‐ones, we developed a rapid access to 5‐methyl‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinoline‐8,9(5H,6H)‐dione ( 9 ) exploiting the γ‐lactone‐fused chloroquinoline 10 previously synthesized in our laboratory (Scheme 1). We also elaborated efficient synthetic methods allowing for a rapid access to two nonclassical bioisosteres of 9 , i.e., a deoxy and a carba analogue. The deoxy analogue 11 was prepared in two steps from the γ‐lactone‐fused quinoline 13 which was also the synthetic precursor of 10 (Scheme 1). The carba analogue 6,9‐dihydro‐5‐methyl‐9‐methylene‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinolin‐8(5H)‐one ( 12 ) was easily prepared by HCl elimination from the 9‐(chloromethyl)dioxolofuroquinoline 15 , which was obtained via a three‐component one‐pot reaction from N‐methyl‐3,4‐(methylenedioxy)aniline (=N‐methyl‐1,3‐benzodioxol‐5‐amine; 16 ), commercially available chloroacetaldehyde, and tetronic acid ( 17 ) (Scheme 2).  相似文献   

4.
2-Thioxo-1,2-dihydropyridine derivatives 2a, 2b were reacted with methyl iodide to give 2-methylthiopyridines 3a, 3b, which were reacted with hydrazine hydrate to produce 3-aminopyrazolo[5,4-b]pyridines 4a, 4b. Compounds 4a, 4b were diazotized to afford the corresponding diazonium salts 5a, 5b, which were reacted with some active methylene compounds 6a-6h to give the corresponding pyrido[2′,3′ : 3,4]pyrazole[5,1-c][1,2,4]triazines 7-14.  相似文献   

5.
Some inimitable and therapeutic coumarin‐substituted fused[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadizole derivatives were synthesized by the cyclocondensation reaction of 2‐oxo‐2H‐chromene‐3‐carboxylic acid ( 1 ) and 4‐amino‐5‐hydrazinyl‐4H‐[1,2,4]‐triazole‐3‐thiol ( 2 ) by using phosphorous oxychloride as a cyclizing agent. This cyclized intermediate 3‐(3‐hydrazino‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐chromen‐2‐one ( 3 ) later condensation with various ethyl 2‐(2‐arylhydrazono)‐3‐oxobutanoates ( 4 ) in NaOAc/MeOH under reflux conditions afforded the corresponding new series of aryl‐substituted hydrazono‐pyrazolyl‐[1,2,4]triazolo[3,4‐b][1,3,4][thiadiazol]‐coumarin derivatives ( 5 ) in good to excellent yields. The structures of newly synthesized compounds were established on the basis of elemental analysis, IR, 1H NMR and mass spectroscopic studies.  相似文献   

6.
A new and efficient route for the synthesis of derivatives of the poorly investigated pyrano[2,3‐d][1,3]thiazine heterocyclic system is disclosed. These compounds were prepared via annulation of 2‐aryl‐4‐hydroxy‐6H‐1,3‐thiazine‐6‐ones with aliphatic and aromatic aldehydes in the presence of pyridine. The method is general and versatile, and the interaction is independent on the nature of the aldehyde, the only exceptions being formaldehyde and salicylaldehydes.  相似文献   

7.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

8.
Cyclization of 5‐cyano‐1,6‐dihydro‐4‐methyl‐2‐phenyl‐6‐thioxopyrimidine 4 with excess of 85% hydrazine hydrate afforded the 3‐amino‐4‐methyl‐6‐phenylpyrazolo[3,4‐d]pyrimidine 5 , which can react with appropriate Mannich base derivatives 13a‐c and chalcones 27a,b to yield the corresponding 6,8‐disubstituted 7,8‐dihydropyrimido[2,3:4,3]pyrazolo[1,5‐a]pyrimidines 15a‐c and 30a,b , respectively. On the other hand, the 6,7,8‐trisubstituted pyrimido[2,3:4,3]pyrazolo[1,5‐a]pyrimidine derivatives 8a‐g, 20a‐e, 36 and 38 were obtained by treatment of compound 5 with appropriate 1,3‐diketones 6a‐g , 3‐dimethylamino‐1‐(substituted)prop‐2‐enones 18a‐e , 3‐aminocrotononitrile 3 , and ethoxymethylenemalononitrile 37 under acidic condition, respectively.  相似文献   

9.
A novel series of pyrazolo[1,5-a]pyrimidines 14a–j and pyrazolo[1,5-a]quinazolines 18a, b were synthesized via condensation of 5-amino-1H-pyrazoles 10a, b with 3-(dimethylamino)-1-aryl-prop-2-en-1-ones 11a–e and 2-((dimethylamino)methylene)-5,5-dimethylcyclohexane-1,3-dione (15), respectively, in glacial acetic acid. Finally, treatment of 10a, b with sodium nitrite (NaNO2) afforded pyrazolo[3,4-d]triazines 20a, b. Structures of compounds were confirmed by their spectral data. These compounds were screened for their in vitro cytotoxic activities against human cancer cell lines (HepG-2 and MCF-7) using 3-[4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The results reveal that, the compounds 14b and 14h were the most potent in comparison with doxorubicin. The structure–activity relationship was discussed.  相似文献   

10.
A one step synthesis protocol for the conversion of heteroylthiosemicarbazides and 2,3‐dichloro‐1,4‐naphthoquinone to naphtho[2,3‐d]thiazoles, naphtho[2,3‐e][1,3,4]thiadiazines as well as bis(naphtho[2,3‐d]thiazolyl)copper(II) derivatives is described. The products were conclusively confirmed by single crystal X‐ray analyses. A mechanism for the formation of the products is presented.  相似文献   

11.
A series of novel fused tetracyclic benzo[4,5]imidazo[1,2‐a]thiopyrano[3,4‐d]pyrimidin‐4(3H)‐one derivatives were synthesized via the reaction of aryl aldehyde, 2H‐thiopyran‐3,5(4H,6H)‐dione, and 1H‐benzo[d]imidazol‐2‐amine in glacial acetic acid. This protocol features mild reaction conditions, high yields and short reaction time.  相似文献   

12.
13.
A convenient route is reported for the synthesis of fused pyrrolo[2,3-d][1,3]oxazine and pyrrolo[2,3-d]-pyrimidine derivatives from 2-amino-1-benzyl-3-t-butoxycarbonyl]-4,5-dimethylpyrrole.  相似文献   

14.
The reaction of 3‐methylthiazolo[3,2‐a]benzimidazole‐2‐carboxylic acid ethyl ester (1) with hydrazine hydrate gives the hydrazide 2 which reacts with CS2/KOH to afford the potassium salt 3. Treatment of 3 with l‐aryl‐2‐bromoethanones 4a,b afforded the 1,3‐thiazoline derivatives 6a,b, respectively, while the reaction of 3 with hydrazine hydrate afforded 1,2,4‐triazole‐3‐thione derivative 9. The reaction of 9 with l‐aryl‐2‐bromoethanones 4a,b and with hydrazonyl chlorides 11a,b gave the 1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazine derivatives 10a,b and 12a,b, respectively. Treatment of hydrazide 2 with phenyl isothiocyanate in refluxing benzene gave the thiosemicarbazide derivative 16. The latter reaction gave 1,3,4‐oxadiazole derivative 17 when benzene was replaced by DMF. Cyclization of the thiosemicarbazide derivative 16 with NaOH resulted in the formation of the 1,2,4‐triazole‐3‐thione derivative 18.  相似文献   

15.
[1,3‐Dihydro‐4‐phenyl(1,5)benzodiazepin‐2‐ylidene]malononitrile 1a was treated with formaline and some different primary amines to give the corresponding pyrimido(1,5)benzodiazepines 2a–d . Treatment of compound 1a with halo reagents yielded the corresponding pyrrolobenzodiazepines 3a,b . The reaction of compound 1a with active methylenes, bidentates, S,S‐ and N,S‐acetals afforded the corresponding spiro(1,5)‐benzodiazepines 4a‐c–8a,b , respectively.  相似文献   

16.
New 7‐Methyl‐3‐substituted‐1,2,4‐triazolo[3,4‐b]benzothiazoles were synthesized from p‐methylaniline to 5 with various aromatic carbonic acids. The yielded product 6a‐j was investigated with Elemental analyses, NMR, MS and IR techniques.  相似文献   

17.
A convenient method is proposed for the synthesis of the previously unknown 4-aryl-1,3-diphenyl-1,4,5,10-tetrahydropyrazolo[3,4-b][1,5]benzodiazepines by cyclocondensation of 5-(2-aminoanilino)-1,3-diphenylpyrazole with aromatic aldehydes. The reaction only takes place very selectively with aldehydes which contain electron acceptor substituents in the aryl fragment. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 913–918, June, 2006.  相似文献   

18.
2-Substituted [1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones 3 were synthesized via regioselective cyclization of 4H-[1,2,4]triazol-3-ylsulfanyl-acrylic acids 2 in the presence of catalytic amounts of heteropolyacids at room temperature in very good yields and rates.  相似文献   

19.
A multicomponent reaction for the synthesis of fused azo‐linked pyrazolo[4,3‐e]pyridines from 3‐amino‐5‐methylpyrazole, indan‐1,3‐dione and synthesized azo‐linked aldehydes using nano‐Fe3O4 as an effective and reusable catalyst is reported. The present methodology offers several advantages, such as a simple procedure with an easy work‐up, short reaction times, high yields, and the absence of any volatile and hazardous organic solvents.  相似文献   

20.
Several 3‐[5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐yl]‐6‐substituted‐1,3,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazoles have been synthesized and the structures of these compounds were established by elemental analysis, MS, IR and 1H NMR spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号