首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Both molecular and crystal‐engineering approaches were exploited to synthesize a new class of multidrug‐containing supramolecular gelators. A well‐known nonsteroidal anti‐inflammatory drug, namely, indomethacin, was conjugated with six different l ‐amino acids to generate the corresponding peptides having free carboxylic acid functionality, which reacted further with an antiviral drug, namely, amantadine, a primary amine, in 1:1 ratio to yield six primary ammonium monocarboxylate salts. Half of the synthesized salts showed gelation ability that included hydrogelation, organogelation and ambidextrous gelation. The gels were characterized by table‐top and dynamic rheology and different microscopic techniques. Further insights into the gelation mechanism were obtained by temperature‐dependent 1H NMR spectroscopy, FTIR spectroscopy, photoluminescence and dynamic light scattering. Single‐crystal X‐ray diffraction studies on two gelator salts revealed the presence of 2D hydrogen‐bonded networks. One such ambidextrous gelator (capable of gelling both pure water and methyl salicylate, which are important solvents for biological applications) was promising in both mechanical (rheoreversible and injectable) and biological (self‐delivery) applications for future multidrug‐containing injectable delivery vehicles.  相似文献   

2.
Following a supramolecular synthon approach, simple salt formation has been employed to gain access to a series of supramolecular gelators derived from the well‐known non‐steroidal anti‐inflammatory drug (NSAID) ibuprofen. A well‐studied gel‐inducing supramolecular synthon, namely primary ammonium monocarboxylate (PAM), has been exploited to generate a series of PAM salts by reacting ibuprofen with various primary amines. Remarkably, all of the salts ( S1 – S7 ) thus synthesized proved to be good to moderate gelators of various polar and nonpolar solvents. Single‐crystal and powder X‐ray diffraction studies established the existence of the PAM synthons in the gel network, confirming the efficacy of the supramolecular synthon approach employed. Most importantly, the majority of the salts ( S2 , S3 , S6 , and S7 ) were capable of gelling methyl salicylate (MS), an important ingredient found in many commercial topical gels. In vitro experiments (MTT and PGE2 assays) revealed that all of the salts (except S3 and S7 ) were biocompatible (up to 0.5 mm concentration), and the most suited one, S6 , displayed anti‐inflammatory ability as good as that of the parent drug ibuprofen. A topical gel of S6 with methyl salicylate and menthol was found to be suitable for delivering the gelator drug in a self‐delivery fashion in treating skin inflammation in mice. Histological studies, including immunohistology, were performed to further probe the role of the gelator drug S6 in treating inflammation. Cell imaging studies supported cellular uptake of the gelator drug in such biomedical application.  相似文献   

3.
Following a supramolecular synthon rationale, a dicarboxylic acid derivative having a naphthalenediimide (NDI) core, namely, bisN‐carboxymethyl naphthalenediimide ( NDI‐G ), was reacted with n‐alkyl amines with varying alkyl chain lengths to generate a new series of primary ammonium dicarboxylate (PAD) salts. The majority of the salts (≈85 %) were found to gel various polar solvents. The gels were characterized by dynamic rheology and high‐resolution electron microscopy. Single‐crystal and powder X‐ray diffraction analyses were used to study the supramolecular synthon present in one of the gelator salts (i.e., S8 ). Charge‐transfer (CT)‐induced gelation with donor molecules such as anthracene methanol ( Ant ) and pyrene ( Py ) was also possible with S8 . The CT complex ( S8.Ant ) displayed anticancer activity as probed by cell migration assay on the highly aggresive breast cancer cell line MDA‐MB‐231 . The DMSO gel of S8.Ant also displayed semiconducting behavior. To the best of our knowledge, simple organic salts with an NDI core that display such mulitifunctional properties are hitherto unknown.  相似文献   

4.
An easy access to a library of simple organic salts derived from tert‐butoxycarbonyl (Boc)‐protected L ‐amino acids and two secondary amines (dicyclohexyl‐ and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc‐glycinate ( GLY.1 ) displayed remarkable load‐bearing, moldable and self‐healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart ( GLY.2 ) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen‐bonded network (HBN) that is believed to be important in gelation. Powder X‐ray diffraction in combination with the single crystal X‐ray structure of GLY.1 clearly established the presence of a 1D hydrogen‐bonded network in the xerogel of the nitrobenzene gel of GLY.1 . The fact that such remarkable properties arising from an easily accessible (salt formation) small molecule are due to supramolecular (non‐covalent) interactions is quite intriguing and such easily synthesizable materials may be useful in stress‐bearing and other applications.  相似文献   

5.
A series of primary ammonium monocarboxylate (PAM) salts derived from β‐alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide???amide and PAM synthons on gelation. Single‐crystal X‐ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure–property correlation based on SXRD and powder X‐ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA‐MB‐231, revealed that one of the PAM salts in the series, namely, PAA.B2 , displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging.  相似文献   

6.
The design, synthesis and self‐assembly of new symmetrical 3,6‐bis(4‐(3,4,5‐tris(dodecyloxy)benzoate)phenyl)‐1,2,4,5‐tetrazine were described. The novel gelator, sym‐tetrazine, was prepared by addition reaction of 4‐cyanophenol with hydrazine monohydrate followed by oxidation reaction to afford the corresponding 3,6‐bis(4‐hydroxyphenyl)‐1,2,4,5‐tetrazine which was then subjected to esterification reaction with 3,4,5‐tris(dodecyloxy)benzoic acid. The chemical structure of the sym‐tetrazine gelator was confirmed by elemental analysis, fourier‐transform infrared spectroscopy (FT‐IR), and nuclear magnetic resonance (1H‐ and 13C‐NMR) spectral measurements. It was confirmed to exhibit relatively strong gelation ability to produce supramolecular assemblies in several polar alcoholic organic solvents, such as butanol, octanol, and 1,6‐dihydroxyhexane. The π‐π stacking and van der Waals mediated self‐assembly of tetrazine‐based organogelator were studied by scanning electron microscopy images of the xerogel to reveal that the obtained organogel consists of fibrillar aggregates. Investigation of FT‐IR and concentration‐dependent 1H‐NMR spectra confirm that the intermolecular van der Waals interactions and π‐π stacking were the key driving forces for self‐assembly during gelation process of s‐tetrazine molecules.  相似文献   

7.
A series of bis‐amides derived from L ‐(+)‐tartaric acid was synthesized as potential low‐molecular‐weight gelators. Out of 14 bis‐amides synthesized, 13 displayed organo‐, hydro‐, and ambidextrous gelation behavior. The gels were characterized by methods including circular dichroism, differential scanning calorimetry, optical and electron microscopy, and rheology. One of the gels derived from di‐3‐pyridyltartaramide ( D‐3‐PyTA ) displayed intriguing nanotubular morphology of the gel network, which was exploited as a template to generate highly aligned 1D silica fibers. The gelator D‐3‐PyTA was also exploited to generate metallogels by treatment with various CuII/ZnII salts under suitable conditions. A structure–property correlation on the basis of single‐crystal and powder X‐ray diffraction data was attempted to gain insight into the structures of the gel networks in both organo‐ and metallogels. Such study led to the determination of the gel‐network structure of the CuII coordination‐polymer‐based metallogel, which displayed a 2D sheet architecture made of a chloride‐bridged double helix that resembled a 5‐c net SnS topology.  相似文献   

8.
Carboxylate molecular crystals have been of interest due to the presence of hydrogen bonding, which plays a significant role in chemical and crystal engineering, as well as in supramolecular chemistry. Acid–base adducts possess hydrogen bonds which increase the thermal and mechanical stability of the crystal. 2,2′‐Thiodiacetic acid (Tda) is a versatile ligand that has been widely explored, employing its multidendate and chelating coordination abilities with many metals; however, charge‐transfer complexes of thiodiacetic acid have not been reported. Two salts, namely ethylenediaminium 2,2′‐thiodiacetate, C2H10N22+·C4H4O4S22−, denoted Tdaen, and 2‐aminoanilinium 2‐(carboxymethylsulfanyl)acetate, C6H9N2+·C4H5O4S, denoted Tdaophen, were synthesized and characterized by IR, 1H and 13C NMR spectroscopies, and single‐crystal X‐ray diffraction. In these salts, Tda reacts with the aliphatic (ethylenediamine) and aromatic (o‐phenylenediamine) diamines, and deprotonates them to form anions with different valencies and different supramolecular networks. In Tdaen, the divalent Tda2− anions form one‐dimensional linear supramolecular chains and these are extended into a three‐dimensional sandwich‐type supramolecular network by interaction with the ethylenediaminium cations. However, in Tdaophen, the monovalent Tda anions form one‐dimensional zigzag supramolecular chains, which are extended into a three‐dimensional supramolecular network by interaction with the 2‐aminoanilinium cations. Thus, both three‐dimensional structures display different ring motifs. The structures of these diamines, which are influenced by hydrogen‐bonded assemblies in the molecular crystals, are discussed in detail.  相似文献   

9.
A well‐studied supramolecular synthon, namely, secondary ammonium monocarboxylate (SAM), was exploited to generate a new series of organic salts derived from variously substituted phenylacetic acid and dicyclohexylamine as potential low‐molecular‐weight gelators. As much as 25 % of the SAM salts under study were gelators. The gels were characterized by rheology, and the morphology of the gel networks was studied by high‐resolution electron microscopy. Single‐crystal and powder XRD data were employed to study structure–property (gelation) correlations. One of the gels could adsorb a hydrophobic dye (Nile Red) more efficiently than that of a hydrophilic dye (Calcein) from dimethyl sulfoxide; this might provide useful clues towards the development of stain‐removing gels.  相似文献   

10.
With the goal of imposing shape and structure on supramolecular gels, we combine a low‐molecular‐weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core–shell‐structured gel beads—a rare example of a supramolecular gel formulated inside discrete gel spheres. The self‐assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP‐loaded gel bead can catalyse the Suzuki–Miyaura reaction, constituting a simple and easy‐to‐use reaction‐dosing form. These uniquely shaped and structured LMWG‐filled gel beads are a versatile platform technology with great potential in a range of applications.  相似文献   

11.
The self‐assembled gelation of an amino‐acid‐based low molecular weight gelator having a pyrene moiety at the N terminus and a bis‐ethyleneoxy unit linked with succinic acid at the C terminus is reported. This amphiphile is capable of gelating binary mixtures (1/3 v/v) of CH3CN/water, DMSO/water, and DMF/water, and the minimum gelation concentration (MGC) varied from 0.2 to 0.3 % w/v. The sodium salt of the amphiphile efficiently gelates water with an MGC of 1.5 % w/v. The participation of different noncovalent interactions in supramolecular gelation by formation of fibrillar networks was investigated by spectroscopic and microscopic methods. High mechanical strength of the supramolecular gels is indicated by storage moduli on the order of 103 Pa. The hydrogel was utilized for energy transfer, whereby inclusion of only 0.00075 % w/v of acridine orange resulted in about 50 % quenching of the fluorescence intensity of the gel through fluorescence resonance energy transfer.  相似文献   

12.
A pyrene‐containing phenylboronic acid (PBA) functionalized low‐molecular‐weight hydrogelator was synthesized with the aim to develop glucose‐sensitive insulin release. The gelator showed the solvent imbibing ability in aqueous buffer solutions of pH values, ranging from 8–12, whereas the sodium salt of the gelator formed a hydrogel at physiological pH 7.4 with a minimum gelation concentration (MGC) of 5 mg mL?1. The aggregation behavior of this thermoreversible hydrogel was studied by using microscopic and spectroscopic techniques, including transmission electron microscopy, FTIR, UV/Vis, luminescence, and CD spectroscopy. These investigations revealed that hydrogen bonding, π–π stacking, and van der Waals interactions are the key factors for the self‐assembled gelation. The diol‐sensitive PBA part and the pyrene unit in the gelator were judiciously used in fluorimetric sensing of minute amounts of glucose at physiological pH. The morphological change of the gel due to addition of glucose was investigated by scanning electron microscopy, which denoted the glucose‐responsive swelling of the hydrogel. A rheological study indicated the loss of the rigidity of the native gel in the presence of glucose. Hence, the glucose‐induced swelling of the hydrogel was exploited in the controlled release of insulin from the hydrogel. The insulin‐loaded hydrogel showed thixotropic self‐recovery property, which hoisted it as an injectable soft composite. Encouragingly, the gelator was found to be compatible with HeLa cells.  相似文献   

13.
The design and fabrication of quantum dots (QDs) with circularly polarized luminescence (CPL) has been a great challenge in developing chiroptical materials. We herein propose an alternative to the use of chiral capping reagents on QDs for the fabrication of CPL‐active QDs that is based on the supramolecular self‐assembly of achiral QDs with chiral gelators. Full‐color‐tunable CPL‐active QDs were obtained by simple mixing or gelation of a chiral gelator and achiral 3‐mercaptopropionic acid capped QDs. In addition, the handedness of the CPL can be controlled by the supramolecular chirality of the gels. Moreover, QDs with circularly polarized white light emission were fabricated for the first time by tuning the blending ratio of colorful QDs in the gel. The chirality transfer in the co‐assembly of the achiral QDs with the gelator and the spacer effect of the capping reagents on the QD surface are also discussed. This work provides new insight into the design of functional chiroptical materials.  相似文献   

14.
A simple strategy for designing salt‐based supramolecular gelators comprised of various nonsteroidal anti‐inflammatory drugs (NSAIDs) and amantadine (AMN) (an antiviral drug) has been demonstrated using a supramolecular synthon approach. Single‐crystal and powder X‐ray diffraction established the existence of the well‐studied gel‐forming 1D supramolecular synthon, namely, primary ammonium monocarboxylate (PAM) synthon in all the salts. Remarkably five out of six salts were found to be capable of gelling methyl salicylate (MS)—an important ingredient in commercially available topical gels; one such selected biocompatible salt displayed an anti‐inflammatory response in prostaglandin E2 (PGE2) assay, thereby indicating their plausible biomedical applications.  相似文献   

15.
A new fluorinated version of a cyclic β‐aminoalcohol gelator derived from 1,2,3,4‐tetrahydroisoquinoline is presented. The gelator is able to gel various nonprotic solvents through OH???N hydrogen bonds and additional CH???F interactions due to the introduction of fluorine. A bimolecular lamellar structure is formed in the gel phase, which partly preserves the pattern of molecular organization in the single crystal. The racemate of the chiral gelator shows lower gelation ability than its enantiomer because of a higher tendency to form microcrystals, as shown by X‐ray diffraction analysis. The influence of fluorination on the self‐assembly of the gelator and the properties of the gel was investigated in comparison to the original fluorine‐free gel system. The introduction of fluorine brings two new features. The first is good recognition of o‐xylene by the gelator, which induces an in situ transition from gels of o‐xylene and of an o‐xylene/toluene mixture to identical single crystals with unique tubular architecture. The second is the enhanced stability of the toluene gel towards ions, including quaternary ammonium salts, which enables the preparation of a stable toluene gel in the presence of chloroaurate or chloroplatinate. The gel system can be used as a template for the synthesis of spherical gold nanoparticles with a diameter of 5 to 9 nm and wormlike platinum nanostructures with a diameter of 2 to 3 nm and a length of 5 to 12 nm. This is the first example of a synthesis of platinum nanoparticles in an organogel medium. Therefore, the appropriate introduction of a fluorine atom and corresponding nonbonding interactions into a known gelator to tune the properties and functions of a gel is a simple and effective tactic for design of a gel system with specific targets.  相似文献   

16.
The self‐assembly of a low‐molecular‐weight organogelator into various hierarchical structures has been achieved for a pyridylpyrazole linked L ‐glutamide amphiphile in different solvents. Upon gel formation, supramolecular chirality was observed, which exhibited an obvious dependence on the polarity of the solvent. Positive supramolecular chirality was obtained in nonpolar solvents, whereas it was inverted into negative supramolecular chirality in polar solvents. Moreover, the gelator molecules self‐assembled into a diverse array of nanostructures over a wide scale range, from nanofibers to nanotubes and microtubes, depending on the solvent polarity. Such morphological changes could even occur for the xerogels in the solvent vapors. We found that the interactions between the pyridylpyrazole headgroups and the solvents could subtly change the stacking of the molecules and, hence, their self‐assembled nanostructures. This work exemplifies that organic solvents can significantly involve the gelation, as well as tune the structure and properties, of a gel.  相似文献   

17.
The gelation of ionic liquids is attracting significant attention because of its large spectrum of applications across different disciplines. These ‘green solvents’ have been the solution to a number of common problems due to their eco‐friendly features. To expand their applications, the gelation of ionic liquids has been achieved by using amino acid‐based low‐molecular‐weight compounds. Variation of individual segments in the molecular skeleton of the gelators, which comprise the amino acid and the protecting groups at the N and C termini, led to an understanding of the structure–property correlation of the ionogelation process. An aromatic ring containing amino acid‐based molecules protected with a phenyl or cyclohexyl group at the N terminus were efficient in the gelation of ionic liquids. In the case of aliphatic amino acids, gelation was more prominent with a phenyl group as the N‐terminal protecting agent. The probable factors responsible for this supramolecular association of the gelators in ionic liquids have been studied with the help of field‐emission SEM, 1H NMR, FTIR, and luminescence studies. It is the hydrophilic–lipophilic balance that needs to be optimized for a molecule to induce gelation of the green solvents. Interestingly, to maximize the benefits from using these green solvents, these ionogels have been employed as templates for the synthesis of uniform‐sized TiO2 nanoparticles (25–30 nm). Furthermore, as a complement to their applications, ionogels serve as efficient adsorbents of both cationic and anionic dyes and were distinctly better relative to their organogel counterparts.  相似文献   

18.
Supramolecular hydrogels are expected to have applications as novel soft materials in various fields owing to their designable functional properties. Herein, we developed an in situ synthesis of supramolecular hydrogelators, which can trigger gelation of an aqueous solution without the need for temperature change. This was achieved by mixing two precursors, which induced the synthesis of a supramolecular gelator and its instantaneous self‐assembly into nanofibers. We then performed the in situ synthesis of this supramolecular gelator at an oil/water interface to produce nanofibers that covered the surfaces of the oil droplets (nanofiber‐stabilized oil droplets). External stimuli induced fusion of the droplets owing to disassembly of the gelator molecules. Finally, we demonstrated that this stimuli‐induced droplet fusion triggered a synthetic reaction within the droplets. This means that the confined nanofiber‐stabilized droplets can be utilized as stimuli‐responsive microreactors.  相似文献   

19.
A novel amphiphilic dendron ( AZOC8GAc ) with three l ‐glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self‐assembled into chiral‐twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo‐irradiation. During the photo‐triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host–guest interaction with α‐cyclodextrin (α‐CD), designated as supra‐dendron gelator AZOC8GAc/α‐CD . The supra‐dendron showed similar gelation behavior to that of AZOC8GAc , but with enhanced photoisomerization‐transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self‐assembly of the supra‐dendron is a hierarchical or multi‐supramolecular self‐assembling process. This work has clearly illustrated that the hierarchical and multi‐supramolecular self‐assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching.  相似文献   

20.
A new class of L ‐glutamic gelators, LG12(CH2)nCOOH, containing different lengths of methylene spacer were synthesized. It was found that the gelation ability of these compounds themselves was very weak. However, when another compound, p‐xylylenediamine (XEA), was introduced, the gelation ability was improved greatly. In particular, LG12(CH2)10COOH showed super‐gelation ability in the presence of XEA, which could immobilize almost all of the solvents except methanol. Moreover, the formed supramolecular gels even could be molded. Interestingly, some supramolecular gels of LG12(CH2)nCOOH and XEA could respond to multiple stimuli, such as heating, shaking, sonication, and acid/base. The studies of CD spectra suggested that the supramolecular chirality induced by self‐assembled chiral gelator molecules in gels could be tuned by the length of methylene spacer. In addition, the supramolecular chirality could be regulated as on/off by heating–cooling or external NH3/HCl. This would facilitate the development of dual chiroptical switches by temperature and acid/base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号