首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal quenching of 5d-4f luminescence from Nd3+, Er3+ and Tm3+ ions doped into KYF4 crystals has been investigated in the temperature range up to ∼750 K where this luminescence is completely quenched. The obtained temperatures of thermal quenching (Tq) are ∼270, 495, 450 K for Nd3+, Er3+, Tm3+, respectively. At high temperatures, thermal quenching of 5d-4f luminescence from Nd3+ and Er3+ is accompanied by the appearance of 4f-4f luminescence from the lower-energy 4f levels. It has been shown that the dominating mechanism of thermal quenching for Nd3+ and Er3+ ions is thermally stimulated non-radiative transitions (intersystem crossing) from the 5d states to lower-energy 4f levels, namely 2G(2)9/2 and 2F(2)7/2, respectively, whereas for the Tm3+ ion, thermally stimulated ionization of 5d electrons to the conduction band states is responsible for thermal quenching of 5d-4f luminescence. The energy gap between the lowest Tm3+ 5d level and the bottom of the KYF4 conduction band has been estimated to be 0.66 eV.  相似文献   

2.
在室温下,测量了Er:Tm:NaY(WO4)2晶体的吸收光谱、激发光谱、发射光谱以及上转换发光,并运用J-O理论对测量的结果进行了计算,得出了Er:Tm:NaY(WO4)2晶体的强度参数.报道了Tm,Er离子间特殊的能量传递和相关上转换,解释了离子间的能级跃迁过程.同时,对于Er增强Tm离子近红外发光的特性也作了充分研究. 关键词: 4)2晶体')" href="#">Er:Tm:NaY(WO4)2晶体 吸收光谱 发射光谱 激发光谱 上转换  相似文献   

3.
采用高温熔融法制备了组分为TeO2-ZnO-Na2O的Tm3+离子单掺和Tm3+/Yb3+共掺碲酸盐玻璃,应用Judd-Ofelt理论计算分析了玻璃样品的强度参量Ωt(t=2, 4, 6),自发辐射跃迁几率A,荧光分支比β和荧光辐射寿命τrad等光谱参量,测量得到了不同Yb3+离子掺杂浓度下玻璃样品的Tm3+离子上转换发光谱.结果显示,在980 nm泵浦光激励下玻璃样品发射出强烈的近红外上转换荧光.对Tm3+离子上转换发光分析表明,强烈的Tm3+离子近红外上转换发光主要来自于Yb3+/Yb3+离子间的共振能量传递以及基于单声子和双声子辅助的Yb3+/Tm3+离子间的非共振能量传递过程,并进一步计算得到了声子贡献比和能量传递系数.最后,计算分析了Tm3+:3F43H6能级间跃迁的1.8 μm波段吸收截面、受激发射截面和增益系数.研究表明,Yb3+/Tm3+共掺TeO2-ZnO-Na2O玻璃可以作为近红外波段固体激光器的潜在增益基质.  相似文献   

4.
This paper reports on the results of the investigation into the intensities of the f-f transitions of Nd3+, Er3+, and Tm3+ ions in calcium niobium gallium garnet (CNGG) crystals. The values of the oscillator strengths and line strengths obtained for hypersensitive transitions and the intensity parameters Ω t of the rare-earth ions in the CNGG crystals are compared with the corresponding quantities for crystals of other garnets and some oxide and fluoride crystals. The assumption is made that an increase in the oscillator strengths and line strengths for the hypersensitive transitions and the intensity parameters Ω2 of the Nd, Er, and Tm ions in the CNGG crystals as compared to those for crystals of other garnets is associated with the specific features revealed in the crystal structure of the calcium niobium gallium garnet, in particular, with the lowering of the symmetry of the positions occupied by rare-earth ions in the crystal structure.  相似文献   

5.
Thermal quenching of interconfigurational 5d-4f luminescence of Er3+ and Tm3+ ions in BaY2F8 crystals is studied in the temperature range of 330–790 K. The quenching temperatures are ~575 and ~550 K for Er3+ and Tm3+, respectively. It is shown that quenching of 5d-4f luminescence of Tm3+ ions is caused by thermally stimulated ionization of 5d electrons to the conduction band.  相似文献   

6.
Yb3+:Er3+:Tm3+ co-doped borosilicate glasses are prepared.Their strong up-conversion photoluminescence spectra in a range from ultra-violet to near-infrared,which are excited by a 978-nm laser diode,are measured,and the mechanisms of energy transfer among Yb3+,Er3+ and Tm3+ ions are discussed.The results show that there is an unexpected wavelength at 900-nm emission from Yb3+ Stark splitting levels to pump Tm3+ ions and there exists an optimum pump power.The concentration of the Tm3+ dopant gives rise to a prominent effect on the intensity of visible and near-infrared emissions for the Yb3+:Er3+:Tm3+ co-doped borosilicate glasses.  相似文献   

7.
By conventional high-temperature melting method, Yb3+/Er3+/Tm3+ co-doped phosphate glass was synthesized. After annealing the precursor glass, the phosphate glass ceramic (GC) was obtained. By measuring the X-ray diffraction (XRD) spectrum, it is proved that the LiYbP4O12 and Li6P6O18 nano-crystals have existed in the phosphate GC. The up-conversion (UC) emission intensity of the GC is obvious stronger compared to that of the glass. The reason is that the shorter distance between rare earth ions in the glass ceramic increases the energy transitions from the sensitized ions (Yb3+) to the luminous ions (Er3+ and Tm3+). By studying the dependence of UC emissions on the pump power, the 523 and 546 nm green emissions of Er3+ ions in the glass are two-photon processes. But in the glass ceramic, they are two/three-photon processes. The phenomenon implies that a three-photon process has participated in the population of the two green emissions. Using Dexter theory, we discuss the energy transitions of Er3+ and Tm3+. The results indicate the energy transition of Tm3+ to Er3+ is very strong in the GC, which changes the population mechanism of UC emissions of Er3+.  相似文献   

8.
The optical properties of Tm3+ in a fluorophosphate glass are reported. Oscillator strengths and Ωλ parameters for Tm3+ were calculated. Energy transfer between Ce3+ → Tm3+, Tm3+ → Eu3+ and Tm3+ → Tb3+ were measured at room temperature and interpreted using the Yokota and Tanimoto scheme. Fluorescence decay results seem to support the hypothesis of a diffusion-limited relaxation. The effects of Tb3+ and especially Ce3+ on the fluorescence of Tm3+ ion point out the interest of these dopants for obtaining a better emission of Tm3+ at 450 nm.  相似文献   

9.
The values of the Slater-Condon (F2, F4, F6), Racah (E1, E2, E3) and Lande ξ4f coefficients the nephelauxetic ratio (β), the bonding parameter (σ), and the Judd-Ofelt intensity (Tλ) parameters have been calculated from the reported absorption spectra of Pr3+, Nd3+, and Er3+ ions in an aprotic solvent SeOCl2 acidified with antimony pentachloride. The nature of the bonding is suggested to be covalent for praseodymium, neodymium and erbium ions in the laser liquid in view of the magnitude of the respective bonding parameters.  相似文献   

10.
High-intensity Er3+ photoluminescence at wavelength λ=1510–1535 nm and with a quantum yield of up to 10% was revealed under nitrogen laser pumping (λ=327 nm) in pseudoamorphous GaN films codoped by Er and oxygen. Because Er3+ ions do not have a resonant absorption level at this wavelength, the erbium ions are excited only via inter-and intraband recombination energy transfer. A distinctive feature of the Er3+ spectrum is its broadening caused by an appreciable contribution of “hot” transitions from the Stark components of the 4 I 13/2 multiplet. At liquid-nitrogen temperature, this contribution is dominant. At 77 K, an instability of the spectrum in the form of optical noise was observed in the 1550-to 1570-nm region. Temperature quenching of the photoluminescence was virtually absent. The high Er3+ photoluminescence intensity was achieved through proper choice of the multistage (cumulative) anneal regime.  相似文献   

11.
This paper describes the results of an investigation of energy transfers between Er3+ and Tm3+ ions in cadmium fluoride crystals. Four non-radiative transfers which play an important role in the infrared conversion processes are presented. For the first time, we report Er3+→Tm3+→Er3+ transfers which explain how the Tm3+ acts as the sensitizer of the red fluorescence of Er3+. The study of energy transfer by measurements of the anti-Stokes fluorescence intensity is shown to be a useful method to clarify the excitation mechanisms of rare-earth ions.  相似文献   

12.
郭琳娜  王育华 《物理学报》2011,60(2):27803-027803
采用化学共沉淀法制备了系列Y1.98-2xYb2x Er0.02SiO5(0.00≤x≤0.15)以及Y1.736Yb0.24Er0.02Tm0.004SiO5上转换发光材料,比较了室温下Y1.98-2xYb2x Er0.02 SiO5 (x=0.00,0.08)样品在400—1600 nm范围内的吸收光谱,测量了所有样品在976 nm OPO激光器激发下的上转换发射光谱,以及Er3+离子4S3/2(4F9/2)→4I15/2,Tm3+离子1G43H6荧光衰减曲线和不同激发功率下的上转换蓝光发射强度,从而分析讨论了Er3+,Tm3+在Y2SiO5中的上转换发光机理.研究结果表明:在1250 ℃相对较低的温度下合成了X2型单斜晶系Y2SiO5 ∶Ln3+(Ln3+=Er3+,Yb3+,Tm3+),Yb3+的敏化显著增强了样品在976 nm附近的吸收能力,并大幅度加宽了该处的吸收带.分析上转换发射光谱发现:上转换绿光和红光强度都随着Yb3+浓度的增加先增强后减弱,但红光的猝灭浓度较高,归因于Er3+→Yb3+反向能量传递ETU4和Yb3+→Er3+正向能量传递ETU3过程的发生;上转换蓝光发射是三光子吸收过程,是通过Yb3+,Tm3+之间三次声子辅助的能量转移方式实现的. 关键词: 上转换 共沉淀 2SiO5∶Er3+')" href="#">Y2SiO5∶Er3+ 3+')" href="#">Yb3+ 3+')" href="#">Tm3+  相似文献   

13.
The excitation spectra of the Nd3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+ emission in the sodium-compensated CaGa2S4 host lattice, a sulfide with wide band gap, contain an intense band below the absorption edge. Comparison of the energy of its maximum with thermodynamic data and correlations to Jørgensen's refined spin-pairing theory predictions allow one to ascribe this band to a charge transfer transition ending onto 4f orbitals. The irregular variation within the rare earth series contrasts with the monotonic variation of the absorption edge in stoichiometric rare earth sulfides (e.g. NaLnS2), associated with interband transitions.  相似文献   

14.
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence.  相似文献   

15.
YVO4:Yb3+,Er3+; YVO4:Yb3+,Tm3+; and YVO4:Yb3+,Er3+,Tm3+ were all synthesized via sol-gel method with a subsequent thermal treatment. Specifically, YVO4:Yb3+,Er3+,Tm3+ phosphors were prepared with different annealing temperatures to study the influence of temperature. The transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescent (PL) spectrofluorometer were used to investigate the morphology, crystal structure, and up-conversion luminescent properties of all samples. In summary, all samples were granular-like nanoparticles and well crystallized with the same tetragonal phase as YVO4. Under the irradiation at 980 nm, YVO4:Yb3+,Er3+ phosphors can generate green emission at 525 and 553 nm and red emission at 657 nm, while YVO4:Yb3+,Tm3+ phosphors can generate blue emission at 476 nm, red emission at 648 nm, and near-infrared emission at 800 nm. Notably, YVO4:Yb3+,Er3+,Tm3+ samples can exhibit green emission, blue emission, red emission, and near-infrared emission at the same time, which might endow the as-prepared samples with potential applications in many fields, such as luminous paint, infrared detection, and biological label.  相似文献   

16.
An overlook of absorption and luminescence characteristics of Nd3+, Er3+ and Tm3+ centers in LiLuF4 single crystal is provided. Single crystal doped with the mentioned RE ions were prepared by micro-pulling-down technique in the form of few cm long rods with the diameter of about 2 mm. Excitation and emission spectra and fast decay kinetics in VUV spectral region were measured at SUPERLUMI station at synchrotron DESY, Hamburg and characterization was further completed in UV-visible region at conventional spectrophotometers. Observed absorption and emission peaks are ascribed to the 5d–4f and 4f–4f optical transitions in the doped rare earth ions. Concentration dependence of the decay kinetics is discussed.  相似文献   

17.
以EDTA为络合剂,用水热法合成了Er3+,Tm3+和Yb3+共掺杂的NaYF4纳米晶。XRD和TEM的结果表明:粒径约为30 nm,属于六方晶系。在980 nm半导体激光器激发下,研究了不同Er3+离子掺杂浓度对Tm3+和Er3+离子上转换发光性能的影响,光强与泵浦功率的双对数曲线表明,474,525,539,650 nm的发射均属于双光子过程,408 nm的发射属于三光子过程。讨论了样品的协作敏化和声子辅助共振能量传递的上转换发光机制。  相似文献   

18.
The intensity of the blue emission of infrared-excited Yb3+, Tm3+-doped compounds varies in the same way with the host lattice as that of the green emission of infrared-excited Yb3+, Er3+-doped compounds. For both emissions, the highest intensity is obtained in the lattice α-NaYF4. The emission spectrum of α-NaYF4:Yb3+, Tm3+ shows a relatively high blue-to-red intensity ratio.  相似文献   

19.
In this study, the principal role of Al2O3 on the features of the photoluminescence spectra of Tm3+ ion and upconversion phenomenon in Tm3+ and Er3+ codoped CaF2−Al2O3−P2O5−SiO2 glass system has been investigated. The concentration of Al2O3 is varied from 2 to 10 mol% while that of Er3+ and Tm3+ is fixed. IR and Raman spectral studies have indicated that there is a gradual increase in the degree of disorder in the glass network with increase in the concentration of Al2O3 up to 6.0 mol%. This is attributed to the presence of Al3+ ions in octahedral positions in larger proportions. When the glasses are doped with Tm3+ ions, the blue and red emissions were observed, whereas in Er3+ doped glasses blue, green and red emissions were observed. When the glasses are codoped with Tm3+ and Er3+ ions and excited at 790 nm, all the three emission lines were observed to be reinforced, especially in the glasses mixed with 6.0 mol% of Al2O3. The IR emission band detected at about 1.8 μm due to 3F43H6 transition of Tm3+ ions is also observed to be strengthened due to codoping. The reasons for enhancement in the intensity of various emission bands due to codoping have been identified and discussed with the help of rate equations for various emission transitions.  相似文献   

20.
Er3+ doped boro-tellurite glasses have been prepared by the conventional melt quenching technique with the chemical composition (39?x) B2O3+30TeO2+15MgO+15K2O+xEr2O3 (where x=0.01, 0.1, 1, 2 and 3 wt%). The structural analysis of the glasses were made through XRD, FTIR spectral measurements and the optical absorption, luminescence measurements were made to analyze the optical behavior of the prepared glasses. The bonding parameters were determined from the optical absorption spectra and were found to be ionic in nature. The experimental oscillator strengths were determined from the absorption spectra have been used to determine the Judd–Ofelt parameters. The Judd?Ofelt parameters were used to explore the important radiative parameters such as transition probability (A), stimulated emission cross-section (σPE) and branching ratios (βR) of the emission transitions 2H9/24I15/2 and 2H11/2 and 4S3/24I15/2 of the trivalent erbium ions. The optical band gap energy (Eopt) values corresponding to the direct and indirect allowed transitions and the Urbach energy values of the prepared Er3+ doped boro-tellurite glasses have been calculated and discussed with similar studies. The spectroscopic behavior of the Er3+ boro-tellurite glasses have been studied by varying the trivalent erbium ion content and the results were discussed and compared with similar studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号