首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Vinyl polymerized norbornene has some useful properties such as good mechanical strength, optical transparency and heat resistance. Several transition metal complexes have been described in the literature as active catalysts for the vinyl polymerization of norbornene. We now report the use of three types of nickel(II) complexes with N‐heterocyclic carbene (NHC) ligands in the catalytic vinyl polymerization of norbornene under a range of conditions. Specifically, two nickel complexes bearing a chelating bis(NHC) ligand, two nickel complexes bearing two chelating anionic N‐donor functionalized NHC ligands as well as one diiodidonickel(II) complex with two monodentate NHC ligands were tested. The solid‐state structure of bis(1,3‐dimethylimidazol‐2‐ylidene)diiodidonickel(II), as determined by X‐ray crystallography, is presented. The highest polymerization activity of 2.6 × 107 g (mol cat)?1 h?1 was observed using the latter nickel complex as catalyst, activated by methylaluminoxane. The norbornene polymers thus obtained are of high molecular weight but with rather low polydispersity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Another way to dienes : The ruthenium‐catalyzed 6‐endo‐cycloisomerization of 1,5‐enynes gives the corresponding 1,3‐cyclohexadienes in high to excellent yields. This novel synthetic and catalytic method constitutes another way to selectively prepare 1,3‐cyclohexadienes, this cyclic diene skeleton being a core subunit in many natural products and a useful building block for a variety of organic transformations.

  相似文献   


5.
Novel ruthenium (II) complexes were prepared containing 2‐phenyl‐1,8‐naphthyridine derivatives. The coordination modes of these ligands were modified by addition of coordinating solvents such as water into the ethanolic reaction media. Under these conditions 1,8‐naphthyridine (napy) moieties act as monodentade ligands forming unusual [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] complexes. The reaction was reproducible when different 2‐phenyl‐1,8‐naphthyridine derivatives were used. On the other hand, when dry ethanol was used as the solvent we obtained complexes with napy moieties acting as a chelating ligand. The structures proposed for these complexes were supported by NMR spectra, and the presence of two ligands in the [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] type complexes was confirmed using elemental analysis. All complexes were tested as catalysts in the hydroformylation of styrene showing moderate activity in N,N′‐dimethylformamide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
7.
By performing density functional theory calculations, we have investigated the Michael addition of acetylacetone to methyl vinyl ketone in the absence and presence of the ionic liquid 1‐butyl‐3‐methylimidazolium hydroxide ([bmIm]OH). In the absence of ionic liquids, acetylacetone is firstly tautomerized to enol form and then takes place Michael addition to methyl vinyl ketone. As in the catalyzed Michael addition reaction, a bmIm+‐OH? ion pair is introduced into the reaction system to model the effect of the ionic liquid environment on the reactivity. The calculated results show that the anion enhances nucleophilic ability of acetylacetone since the OH? anion captures a proton to form an acetylacetone anion‐H2O complex, and the cation improves the electrophilic ability of methyl vinyl ketone by forming intermolecular hydrogen‐bonds. Both the remarkable effects of the cation and anion on the reactivity of reactants promote this reaction, which take place more easily compared with uncatalyzed reaction. The calculated results show that the main product of the Michael addition is in its ketone form. Our study provides a detailed reaction mechanism of Michael addition catalyzed by basic ionic liquid [bmIm]OH and clearly reveal the catalytic role of ionic liquid in important chemical reaction. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

8.
Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation‐resistant and can stabilize high‐oxidation‐state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2]2+ (qpy=2,2′:6′,2′′:6′′,2′′′‐quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze CeIV‐driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy‐N,N′′′‐dioxide (ONNO) complexes [Ru(ONNO)(L)2]3+ which are the real catalysts for water oxidation.  相似文献   

9.
10.
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2O‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand.  相似文献   

11.
12.
A novel rearrangement of 2‐(1‐hydroxyalkyl)‐1‐alkylcyclopropanol has been found. It proceeds in the presence of a catalytic amount of organozinc ate complex to give vic‐diols. The rearrangement can be applied to various types of 2‐(1‐hydroxyalkyl)‐1‐alkylcyclopropanol, which can be easily prepared from the corresponding α,β‐epoxyketones and bis(iodozincio)methane. When bicyclo[13.1.0]pentadecane‐1,15‐diol was treated with the organozinc ate complex, the corresponding 14‐membered cyclic vic‐diol was obtained. Thus, this rearrangement is also useful for changing the ring size of cyclic substrates.  相似文献   

13.
We report a simple, highly stereoselective synthesis of (+)‐(S)‐γ‐ionone and (‐)‐(2S,6R)‐cis‐γ‐irone, two characteristic and precious odorants; the latter compound is a constituent of the essential oil obtained from iris rhizomes. Of general interest in this approach are the photoisomerization of an endo trisubstituted cyclohexene double bond to an exo vinyl group and the installation of the enone side chain through a [(NHC)AuI]‐catalyzed Meyer–Schuster‐like rearrangement. This required a careful investigation of the mechanism of the gold‐catalyzed reaction and a judicious selection of reaction conditions. In fact, it was found that the Meyer–Schuster reaction may compete with the oxy‐Cope rearrangement. Gold‐based catalytic systems can promote either reaction selectively. In the present system, the mononuclear gold complex [Au(IPr)Cl], in combination with the silver salt AgSbF6 in 100:1 butan‐2‐one/H2O, proved to efficiently promote the Meyer–Schuster rearrangement of propargylic benzoates, whereas the digold catalyst [{Au(IPr)}2(μ‐OH)][BF4] in anhydrous dichloromethane selectively promoted the oxy‐Cope rearrangement of propargylic alcohols.  相似文献   

14.
The water‐soluble phosphine ligands, 1,3,5‐triaza‐7‐phosphatricyclo[3.3.1.13,7]decane (tpa) and 1‐alkyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodides (Rtpa+I), with alkyl=methyl(mtpa+I), ethyl (etpa+I) and n‐propyl, (ptpa+I), and mtpa+Cl react with [Rh2Cl2(CO)4] giving the rhodium(I) complexes [RhCl(CO)(tpa)2], [RhI(CO)(Rtpa+I)2], [RhCl‐­(CO)(mtpa+Cl)3] and [RhI(CO)(Rtpa+I)3]. The properties and reactivities of the complexes have been investigated using 1H and 31PNMR and IR spectroscopies. The five‐coordinate complexes in solutions show dynamic properties. The complexes are catalysts of the water‐gas shift reaction, the hydrogenation of CC and CO bonds, the hydroformylation of alkenes and the isomerization of unsaturated compounds. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
The [(P,P)Au=C(Ph)CO2Et]+ complex 3 [where (P,P) is an o‐carboranyl diphosphine ligand] was prepared by diazo decomposition at ?40 °C. It is the first α‐oxo gold carbene complex to be characterized. Its crystallographic structure was determined and DFT calculations have been performed, unraveling the key influence of the chelating (P,P) ligand. The gold center is tricoordinate and the electrophilicity of the carbene center is decreased. Complex 3 mimics transient α‐oxo gold carbenes in a series of catalytic transformations, and provides support for the critical role of electrophilicity in the chemoselectivity of phenol functionalization (O?H vs. C?H insertion).  相似文献   

16.
A new synthetic route to the privileged 1,2‐dihydroisoquinolines is reported. This method, which relies on a gold‐catalyzed formal [4+2] cycloaddition between ynamides and imines, provides a new retrosynthetic disconnection of the 1,2‐dihydroisoquinoline core by installing the 1,8a C?C and 2,3 C?N bonds in one step. Both aldimines and ketimines can be used as substrates. In addition, one example of dihydrofuropyridine synthesis is also demonstrated.  相似文献   

17.
Tying up loose ends : The reaction of bisallenes tethered with N‐(p‐tolylsulfonamide) in the presence of a cationic gold N‐heterocyclic carbene catalyst gave new cycloisomerization products, 6,7‐dimethyleneazabicyclo[3.1.1]heptanes, in high yields (see scheme; IPr=N,N′‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene).

  相似文献   


18.
19.
A gold‐catalyzed highly regio‐ and chemoselective oxidative ring expansion of 2‐alkynyl‐1,2‐dihydropyridines and its analogues using pyridine‐N‐oxide as the oxidant has been developed. Ring expansion proceeds through exclusive 1,2‐migration of a vinyl or phenyl group, whereas no 1,2‐H and 1,2‐N migration take place. The reaction provides an efficient and attractive route to various types of medium‐sized azepine derivatives in generally high to excellent yields with a broad functional group tolerance. DFT studies indicate that the reaction proceeds through the formation of a cyclopropyl gold intermediate, and no gold carbene species is involved.  相似文献   

20.
A highly regio‐ and enantioselective rhodium‐catalyzed 1,4‐addition of arylboronic acids to β,γ‐unsaturated α‐ketoamides using a simple new chiral sulfinylphosphine ligand is described. This transformation provides an attractive approach to construct chiral nonracemic γ,γ‐diarylsubstituted carbonyl compounds, as exemplified in the concise syntheses of sertraline and tetrahydroquinoline‐2‐carboxylamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号