首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and selective liquid chromatography tandem mass spectrometry was developed and validated for the simultaneous determination of three major lignans (podophyllotoxin, epipodophyllotoxin, and 4′‐demethylpodophyllotoxin) in rat plasma using diphenhydramine as the internal standard. The analytes were detected using a triple quadrupole mass spectrometer that was equipped with an electrospray ionization source in the positive ion and selected reaction monitoring modes. The linearity of the calibration curve was good, with coefficients of determination (r2) >0.9914 for all of the analytes. The developed method was successfully applied for the simultaneous determination of the three lignans in rat plasma following oral administration of Diphylleia sinensis extract to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A rapid, specific and sensitive ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for determination of isofraxidin, rosmarinic acid and kaempferol‐3‐O ‐glucuronide in rat plasma using warfarin as an internal standard (IS). Separation was conducted on a Thermo Hypersil GOLD C18 column with linear gradient elution using methanol and water. Mass spectrometric detection was conducted using selected reaction monitoring (SRM) via an electrospray ionization (ESI) source. All analytes exhibited good linearity within their concentration ranges (r > 0.9990). The lower limits of quantitations of isofraxidin, rosmarinic acid, and kaempferol‐3‐O‐ glucuronide were 1.31, 0.67 and 0.92 ng/mL, respectively. Intra‐ and inter‐day precisions of these investigated components exhibited an RSD within 11.7%, and the accuracy ranged from −12.5 to 15.0% at all QC levels. The developed method was successfully applied to a pharmacokinetic study of isofraxidin, rosmarinic acid, and kaempferol‐3‐O‐ glucuronide in rats after oral administration of Herba Sarcandrae Extract.  相似文献   

3.
An ultra‐performance liquid chromatography tandem mass spectrometry method was developed for the simultaneous determination of protocatechuic acid, catechin, gallocatechin and formononetin in rat plasma, with genkwanin as the internal standard in this study. Plasma samples were prepared by liquid–liquid extraction with ethyl acetate. The four components were separated on an Agilent Zorbax Eclipse Plus C18 column (2.1 × 50 mm, 1.8 μm) with the mobile phase consisting of water containing 0.05% formic acid and methanol (35:65, v/v), and detected by negative ion electrospray ionization in the selected reaction monitoring mode. The method was linear for all analytes over the investigated ranges, with all correlation coefficients >0.99. The validated lower limit of quantification was 0.5 ng/mL for protocatechuic acid, catechin, and gallocatechin and 0.8 ng/mL for formononetin. The intra‐ and inter‐day precisions (RSD, %) were <13.1%, and accuracy (RE, %) ranged from ?13.8 to 9.9%. The mean absolute extraction recoveries of the analytes and internal standard from rat plasma were all >80.7%. The validated method was successfully applied for the first time to investigate the pharmacokinetics of four chemical ingredients after oral administration of Caulis Spatholobi Extract in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The fruit of Schisandra chinensis is a well‐known herbal medicine and dietary supplement due to a variety of biological activities including antihepatotoxic and antihyperlipidemic activities. However, the simultaneous validation methodology and pharmacokinetic investigation of nine lignans of S. chinensis extract in biological samples have not been proved yet. Thus, the present study was undertaken to develop the proper sample preparation method and simultaneous analytical method of schisandrol A, gomisin J, schisandrol B, tigloylgomisin H, angeloylgomisin H, schisandrin A, schisandrin B, gomisin N, and schisandrin C in the hexane‐soluble extract of S. chinensis to apply for the pharmacokinetic study in rats. All intra‐ and interprecisions of nine lignans were below 13.7% and accuracies were 85.1–115% and it is enough to evaluate the pharmacokinetic parameters after both intravenous and oral administration of hexane‐soluble extract of S. chinensis to rats.  相似文献   

5.
Orientin showed a broad array of biological activities, and it is the major bioactive compound in the Trollius chinensis Bunge. The aim of this study was to investigate the comparative pharmacokinetics of orientin after intravenous administration of single orientin and T. chinensis Bunge extract. Sample preparation involved a simple one‐step deproteinization procedure with acetonitrile. Chromatographic separation was achieved on a Waters BEH C18 column with a mobile phase consisting of acetonitrile and water containing 0.1% formic acid in an isocratic elution way. The detection was accomplished in multiple reaction monitoring mode with positive electrospray ionization. The pharmacokinetic properties of orientin were compared after intravenous administrations of pure orientin and T. chinensis Bunge extract to rats with approximately the same dosage of 10 mg/kg. The results of the study indicate that the pharmacokinetics of orientin in rat plasma show significant differences between two groups. This is useful for the clinical uses of therapeutic dosing of orientin and T. chinensis Bunge.  相似文献   

6.
A highly sensitive, simple and selective high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and applied to the determination of bergenin concentration in human plasma. Bergenin and the internal standard (IS) thiamphenicol in plasma were extracted with ethyl acetate, separated on a C(18 )reversed-phase column, eluted with mobile phase of acetonitrile-water, ionized by negative ion pneumatically assisted electrospray and detected in the multi-reaction monitoring mode using precursor --> product ions of m/z 327.1 --> 192 for bergenin and 354 --> 185.1 for the IS, respectively. The linear range of the calibration curve for bergenin was 0.25-60 ng mL(-1), with the lowest limit of quantification of 0.25 ng mL(-1), and the intra/inter-day relative standard deviation (RSD) was less than 10%. The method is suitable for the determination of low bergenin concentration in human plasma after therapeutic oral doses, and has been first and successfully used for its pharmacokinetic studies in healthy Chinese volunteers.  相似文献   

7.
A specific and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the analysis of glaucocalyxin A and glaucocalyxin B in rat plasma using praeruptorin A as an internal standard. Separation was performed on a Hypurity C18 column (2.1 × 50 mm, 5 μm) with isocratic elution using 0.2% formic acid in water–acetonitrile (20:80, v/v). Mass spectrometric detection was conducted using selected reaction monitoring via an electrospray ionization source. Both analytes exhibited good linearity within their concentration ranges (r2 > 0.9932). The lower limit of quantitation of glaucocalyxin A and glaucocalyxin B was 1.10 ng/mL. Intra‐ and inter‐day precision exhibited an RSD within 14.5%, and the accuracy (RE) ranged from –12.1 to 15.0% at the lower limit of quantitation and three quality control levels. The developed assay was successfully applied to a pharmacokinetic study of glaucocalyxin A and glaucocalyxin B in rats after oral administration of Rabdosia japonica extract.  相似文献   

8.
杜昕昕  王寅鹏  肖伟  朱靖博 《色谱》2023,41(3):257-264
研究建立了基质固相分散萃取-高效液相色谱(MSPD-HPLC)分析五味子中5种木脂素类化合物(五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子丙素)的方法。采用反相C_(18)色谱柱进行分离,以0.1%(v/v)甲酸水溶液和乙腈为流动相进行梯度洗脱,在波长250 nm下检测。考察了包括硅胶、酸性氧化铝、中性氧化铝、碱性氧化铝、佛罗里硅土、Diol、XAmide、Xion和C_(18)、C_(18)-ME、C_(18)-G_(1)、C_(18)-HC等在内的12种吸附剂以及吸附剂的质量、洗脱剂的种类、洗脱剂体积对五味子木脂素类化合物得率的影响。选定Xion作为MSPD-HPLC分析五味子中木脂素类化合物的吸附剂;基于吸附剂Xion的萃取参数优化结果表明:以0.25 g五味子粉末为固定值,Xion(0.75 g)为吸附剂,甲醇(15 mL)为洗脱剂,MSPD对五味子中木脂素类化合物具有较高的得率。建立的五味子中5种木脂素类化合物的分析方法,各目标分析物具有良好的线性关系(相关系数R^(2)≥0.9999),检出限与定量限分别介于0.0089~0.0294μg/mL和0.0267~0.0882μg/mL之间。对五味子木脂素类化合物进行低、中、高3个水平的加标回收试验,平均回收率为92.2%~111.2%,相对标准偏差为0.23%~3.54%。日内和日间精密度均小于3.6%。与超声辅助提取和热回流提取前处理相比,MSPD具有萃取和净化相结合、耗时少、所需溶剂量少的优点,且MSPD-HPLC获得的结果优于经典方法。所建立的方法成功应用于17批五味子中5种木脂素类化合物含量的分析。  相似文献   

9.
In this study, a sensitive and robust ultra‐performance liquid chromatography–mass spectrometry method with multiple‐reaction monitoring mode was developed, validated, and applied to determine pharmacokinetics of catalpol and acteoside in normal and doxorubicin‐induced chronic kidney disease rats after oral administration of Rehmannia glutinosa extract. The lower limits of quantification for catalpol and acteoside in rat plasma were 2.62 and 0.61 ng/mL, with a signal‐to‐noise ratio of ≥10. Precision and accuracy studies showed that catalpol and acteoside plasma concentrations were within the 10% range in all studies. The extraction recoveries of catalpol and acteoside were both >68.24% and the matrix effects ranged from 96.59 to 101.62%. The method was successfully applied to the pharmacokinetic study of catalpol and acteoside after oral administration of RG extract to normal and model rats, respectively. This study might further support the traditional use of RG to treat kidney diseases clinically. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and specific LC‐MS/MS method was developed for simultaneous determination of aloe‐emodin, rhein, emodin, chrysophanol and physcion and their conjugates in rat plasma. The lower limit of quantitation of each anthraquinone was 0.020–0.040 µm . Intra‐day and inter‐day accuracies were 90.1–114.3% and the precisions were <14.6%. The matrix effects were 104.0–113.2%. The method was successfully applied to a pharmacokinetic study in rats receiving a rhubarb extract orally. The area under the concentration–time curve (AUC0–t) and peak concentration (Cmax) of free aloe‐emodin and emodin in rat plasma were much lower than those of rhein. The amounts of chrysophanol and physcion were too low to be continuously detected. After treating the plasma samples with β‐glucuronidases, each anthraquinone was detectable throughout the experimental period (36 h) and showed much higher plasma concentrations and AUC0–t. The free/total ratios of aloe‐emodin, rhein and emodin were 6.5, 49.0 and 1.7% for Cmax and 3.7, 32.5 and 1.1% for AUC0–t, respectively. The dose‐normalized AUC0–t and Cmax of the total of each anthraquinone were in the same descending order: rhein > emodin > chrysophanol > physcion > aloe‐emodin. These findings reveal phase II conjugates as the dominant in vivo existing forms of rhubarb antharquinones and warrant a further study to evaluate their contribution to the herbal activity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A rapid, sensitive and selective liquid chromatography/tandem mass spectrometry method (LC‐MS/MS) was developed and validated for simultaneous determination of albiflorin and paeoniflorin in rat plasma using geniposide as an internal standard. Plasma samples were extracted by solid‐phase extraction. Chromatographic separation was carried out on a Zorbax SB‐C18 analytical column (150 × 2.1 mm × 5 µm) with 0.1% formic acid–acetonitrile (70:30, v/v) as the mobile phase. Detection was performed by multiple reaction monitoring mode using electrospray ionization in the positive ion mode. The total run time was 3.0 min between injections. The calibration curves were linear over a range of 1–1000 ng/mL for albiflorin and 2–2000 ng/mL for paeoniflorin. The overall precision and accuracy for all concentrations of quality controls and standards were better than 15%. Mean recovery was determined to be 87.7% for albiflorin and 88.8% for paeoniflorin. The validated method was successfully applied to the pharmacokinetic study of albiflorin and paeoniflorin in rat plasma after oral administration of Radix Paeoniae Alba extract and Tang‐Min‐Ling‐Wan. The pharmacokinetic parameters showed that albiflorin and paeoniflorin from Tang‐Min‐Ling‐Wan were absorbed more rapidly with higher concentrations in plasma than that from Radix Paeoniae Alba extract. The results provided a meaningful basis for evaluating the clinical applications of traditional Chinese medicine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive, selective and robust liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the rapid determination of linarin in rat plasma. Separation of the analyte and warfarin as internal standard (IS) from 100 μL rat plasma was carried out by simple protein precipitation treatment. Chromatographic separation of the analyte was performed on a Diamonsil® C18 column (150 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of methanol–0.5% formic acid (80:20, v/v). The flow rate was 0.6 mL/min and the total run time was not more than 4.0 min. The method was validated over a wide dynamic concentration range of 1.00–1000 ng/mL for linarin. The precision and accuracy values for linarin met the acceptance criteria according to US Food and Drug Administration guidelines. Linarin was stable in the stability studies including a long‐term test (?80°C for 43 days), a short‐term test (ambient for 2 h and autosampler for 8 h) and three freeze–thaw cycles (?80–25°C). The developed assay method was applied to the pharmacokinetic study in rats after a single intramuscular administration of 713 µg/kg linarin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A simple and rapid method for determination of six lignans found in plant cell cultures of Schisandra chinensis was developed and validated. The lignans were extracted from plant samples with methanol and the extracts were effectively cleaned by solid‐phase extraction using Strata C18‐E (Phenomenex) cartridges. Chromatographic separation was carried out on a Chromolith Performance RP‐18e monolithic column (100 × 4.6 mm, Merck) using an isocratic mobile phase of acetonitrile and water in a 50:50 (v/v) ratio. The eluent was monitored at 220 nm. The baseline separation of schizandrin, gomisin A, deoxyschizandrin, γ‐schizandrin, gomisin N and wuweizisu C was achieved in a relatively short time period (20 min), which was made possible by the relatively high flow rate of the mobile phase (2 mL/min). The lower limit of quantitation was 0.1 mg/L for schizandrin and gomisin A, 0.3 mg/L for deoxyschizandrin, γ‐schizandrin, and gomisin N and 1 mg/L for wuweizisu C. The analysis of spiked samples containing six lignans provided absolute recoveries between 93 and 101% in all cases. The validated method was successfully applied to the determination of lignans in embryogenic plant cell cultures of Schisandra chinensis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid, selective and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to determine lisinopril in human plasma. Sample pretreatment involved a one-step protein precipitation with methanol of 0.1 mL plasma. Analysis was performed on an Inertsil ODS-3 column (2.1 × 50 mm i.d., 3 μm) with mobile phase consisting of methanol-water (containing 0.2% formic acid; 55:45, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode via an electrospray ionization source. Each plasma sample was chromatographed within 2.5 min. The linear calibration curves for lisinopril were obtained in the concentration range of 1.03-206 ng/mL (r(2) ≥ 0.99) with a lower limit of quantification of 1.03 ng/mL. The intra- and inter-day precisions (relative standard deviation) were not higher than 11%, and accuracy (relative error) was within ±6.8%, determined from quality control samples for lisinopril, which corresponded to the guidance of the Food and Drug Administration. The method described herein was fully validated and successfully applied to the pharmacokinetic study of lisinopril tablets in healthy male volunteers after oral administration.  相似文献   

15.
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC/MS/MS) method was developed and validated using spinasterol as the internal standard (IS) for the simultaneous determination of shionone and epi‐friedelinol in rat plasma. Plasma samples were pretreated using liquid–liquid extraction with ethyl ether. Chromatographic separation was achieved on a C18 column (100 × 2.1 mm, 5 μm) with an isocratic elution consisting of acetonitrile–0.1% formic acid water (75:25, v/v) at a flow rate of 0.30 mL/min. Detection was performed under the selected reaction monitoring scan using an electrospray ionization in the positive ion mode. The mass transitions were as follows: m/z 427.4 → 95.1 for shionone, m/z 411.4 → 205.2 for epi‐friedelinol and m/z 395.3 → 105.2 for IS. All calibration curves exhibited good linearity (r > 0.995) over the concentration range for both components. The intra‐ and inter‐day precisions at three QC and lower limit of quantitation levels were both <10.21% in terms of relative standard deviation, and the accuracy ranged from ?7.13 to 8.02% in terms of relative error. The extraction recoveries of the compounds ranged from 82.07 to 89.81%. The developed method was successfully applied to the pharmacokinetic study of shionone and epi‐friedelinol after oral administration of Aster tataricus extract to rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method has been developed and validated for the determination of gymnemagenin (GMG), a triterpene sapogenin from Gymnema sylvestre, in rat plasma using withaferin A as the internal standard (IS). Plasma samples were simply extracted using liquid–liquid extraction with tetra‐butyl methyl ether. Chromatographic separation was performed on Luna C18 column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia) at a flow rate of 0.8 mL/min. GMG and IS were eluted at 4.64 and 4.36 min, ionized in negative and positive mode, respectively, and quantitatively estimated using multiple reaction monitoring (MRM) mode. Two MRM transitions were selected at m/z 505.70 → 455.5 and m/z 471.50 → 281.3 for GMG and IS, respectively. The assay was linear over the concentration range of 5.280–300.920 ng/mL. The mean plasma extraction recoveries for GMG and IS were found to be 80.92 ± 8.70 and 55.63 ± 0.76%, respectively. The method was successfully applied for the determination of pharmacokinetic parameters of GMG after oral administration of G. sylvestre extract. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
In this paper, a sensitive, rapid and reproducible high‐performance liquid chromatography–tandem mass spectrometry method was developed to analyze 16α‐hydro‐ent‐kauran‐17,19‐dioic acid in rat plasma. First, this study compared the pharmacokinetics of 16α‐hydro‐ent‐kauran‐17,19‐dioic acid after oral administration of monomer and Siegesbeckiae pubescens Makino extract in rat plasma with approximately the same dosage of 6.0 mg/kg. Second, chromatographic separation was performed on a Waters Symmetry C18 column (2.1 × 100 mm, 3.5 µm) with isocratic elution using methanol–water containing 5 mmol/L ammonium acetate (70:30, v/v) as mobile phase at a flow rate of 0.2 mL/min. The calibration curves were linear over the range of 30–12000 ng/mL for monomer. At different time points (0, 0.083, 0.25, 0.75, 1, 2, 4, 6, 8, 12, 18, 24, 36, 48, 60 and 72 h) after administration, the concentrations of monomer in rat plasma were determined and main pharmacokinetic parameters were estimated. The double absorption presented in this study indicates that the pharmacokinetics of monomer in rat plasma have significant differences between different groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A simple, specific, and sensitive ultra-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of 3'-hydroxypuerarin, 6'-O-xylosylpuerarin, mirificin, puerarin, 3'-methoxypuerarin and daidzin in rat plasma. After the addition of methanol containing 0.1% formic acid and 10% ascorbic acid, the analytes and rutoside were obtained by protein precipitation, then separated on a Thermo Syncronis C18 column (2.1 mm × 10 cm, 1.7 μm) by gradient elution and monitored using an electrospray ionization interface operating in positive ion and selective reaction monitoring acquisition mode. The calibration curves of these analytes showed good linearity (r > 0.99) within the test ranges. The lower limit of quantification was 0.0200 μg/mL for 3'-hydroxypuerarin, 0.0101 μg/mL for 6'-O-xylosylpuerarin, 0.0100 μg/mL for mirificin and puerarin, 0.0098 μg/mL for 3'-methoxypuerarin, and 0.0090 μg/mL for daidzin. The intraday and interday precision and accuracy were all within 15%. The extraction recoveries were from 74.0 to 95.8%. The validated method was successfully applied to pharmacokinetic studies of the six isoflavonoids in rat plasma after intravenous administration of total flavonoids from Gegen.  相似文献   

20.
A rapid and simple reverse‐phase high‐performance liquid chromatography (RP‐HPLC) was developed and validated for the quantification of kirenol in rat plasma after oral administration. Kirenol and darutoside (internal standard, IS) were extracted from rat plasma using Cleanert™ C18 solid‐phase extraction (SPE) cartridge. Analysis of the extraction was performed on a Thermo ODS‐2 Hypersil C18 reversed‐phase column with a gradient eluent composed of acetonitrile and 0.1% phosphoric acid. The flow rate was 1.0 mL/min and the detection wavelength was set at 215 nm. The calibration curve was linear over the range of 9.756–133.333 µg/mL (r2 = 0.9991) in rat plasma. The lower limits of detection and quantification were 2.857 and 9.756 µg/mL, respectively. The intra‐ and inter‐day precisions (relative standard deviation, RSD) were between 2.24 and 4.46%, with accuracies ranging from 91.80 to 102.74%. The extraction recovery ranged from 98.16 to 107.62% with RSD less than 4.81%. Stability studies showed that kirenol was stable in preparation and analytical process. The present method was successfully applied to the pharmacokinetic study of kirenol in male Sprague–Dawley rats after oral administration at a dose of 50 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号