首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water‐soluble rhodium complex generated in situ from [Rh (COD)Cl]2 in aqueous ammonia has been revealed as a highly efficient catalyst for the hydrogenation of aromatic nitriles, to primary amines with excellent yields. The catalyst is also highly selective towards primary amines in the case of sterically hindered aliphatic nitriles. The catalytic system can also be recycled and re‐used with no significant loss of activity.  相似文献   

2.
Ruthenium complexes [RuCl2L2] were prepared by treating [RuCl2(p‐cymene)]2 with structurally similar N‐(2‐(diphenylphosphino)benzylidene)‐3‐methylpyridin‐2‐amine, 4‐(2‐(diphenylphosphino)benzylideneamino)‐3‐methylphenol and 4‐(2‐(2‐(diphenylphosphino)benzylideneamino)ethyl)phenol refluxed in toluene. These complexes were used as catalysts for the transfer hydrogenation of acetophenones in 2‐propanol and for the direct hydrogenation of styrenes under hydrogen pressure. The results of the catalytic studies provide evidence that these complexes function as excellent catalysts for hydrogenation and transfer hydrogenation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The asymmetric transfer hydrogenation of activated olefins with chiral ruthenium amido complexes (Noyori catalyst) using formic acid-triethylamine azeotrope as hydrogen source resulted in excellent yields and high enantioselectivities (up to 88.5%).  相似文献   

4.
The complex trans,cis‐[RuCl2(PPh3)2(ampi)] (2) was prepared by reaction of RuCl2(PPh3)3 with 2‐aminomethylpiperidine(ampi) (1). [RuCl2(PPh2(CH2)nPPh2)(ampi) (n = 3, 4, 5)] (3–5) were synthesized by displacement of two PPh3 with chelating phosphine ligands. All complexes (2–5) were characterized by 1 H, 13C, 31P NMR, IR and UV‐visible spectroscopy and elemental analysis. They were found to be efficient catalysts for transfer hydrogen reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Novel chiral tetraaza ligands(R)-N,N′-bis[2-(piperidin-1-yl)benzylidene]propane-l,2-diamine 6 and(S)-N-[2-(piperidin-l- yl)benzylidene]-3-{[2-(piperidin-1-yl)benzylidene]amino}-alanine sodium salt 7 have been synthesized and fully characterized by NMR,IR,MS and CD spectra.The catalytic property of the ligands was investigated in Ir-catalyzed enantioselective transfer hydrogenation of ketones.The corresponding optical active alcohols were obtained with high yields and moderate ees under mild reaction conditions.  相似文献   

6.
7.
The asymmetric transfer hydrogenation (ATH) of a wide range of ketones catalyzed by manganese complex as well as chiral PxNy-type ligand under mild conditions was investigated. Using 2-propanol as hydrogen source, various ketones could be enantioselectively hydrogenated by combining cheap, readily available [MnBr(CO)5] with chiral, 22-membered macrocyclic ligand (R,R,R',R')-CyP2N4 (L5) with 2 mol% of catalyst loading, affording highly valuable chiral alcohols with up to 95% ee.  相似文献   

8.
Three Ru–η6‐benzene–phosphine complexes bearing tri‐(p‐methoxyphenyl)phosphine, triphenylphosphine and tri‐(p‐trifluoromethylphenyl)phosphine were synthesized and characterized by 31P{1H} NMR, 1H NMR, 13C{1H} NMR and elemental analyses. Complex 1 was further identified by X‐ray crystallography. These complexes exhibit good to excellent activities for the transfer hydrogenation of ketones in refluxing 2‐propanol, and the highest turnover frequency (TOF) is up to 5940 h−1. The effect of electronic factors of these complexes on the transfer hydrogenation of ketones reveals that the catalytic activity is promoted by electron‐donating phosphine and the catalyst stability is improved by electron‐withdrawing phosphine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The water‐soluble ruthenium(II) complexes [Cp′RuX(PTA)2]Y and [CpRuCl(PPh3)(mPTA)]OTf (Cp′ = Cp, Cp*, X = Cl and Y = nil; or X = MeCN and Y = PF6; PTA = 1,3,5‐triaza‐7‐phosphaadamantane; mPTA = 1‐methyl‐1,3,5‐triaza‐7‐phosphaadamantane) were used as catalyst precursors for the hydrogenation of CO2 and bicarbonate in aqueous solutions, in the absence of amines or other additives, under relatively mild conditions (100 bar H2, 30–80 °C), with moderate activities. Kinetic studies showed that the hydrogenation of HCO3? proceeds without an induction period, and that the rate strongly depends on the pH of the reaction medium. High‐pressure multinuclear NMR spectroscopy revealed that the ruthenium(II) chloride precursors are quantitatively converted into the corresponding hydrides under H2 pressure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A convenient and general method of synthesis of binuclear ruthenium(II) pyridazine complex was reported. The synthesized complex was characterized by analytical and spectral methods. The structure of the complex was confirmed by X-ray diffraction technique and was found to be an efficient catalyst for the transfer hydrogenation of ketones with excellent conversions in the presence of isopropanol/KOH at 82 °C. The effect of solvents, bases, and different catalyst/substrate ratio for the reaction was also investigated.  相似文献   

11.
A series of water‐soluble siloxane polymers with pendent phosphorylcholine (PC) and sulfobetaine (SB) zwitterions was prepared using thiol‐ene “click” chemistry. Specifically, well‐defined vinyl‐substituted siloxane homopolymers and block copolymers were functionalized with small molecule zwitterionic thiols at room temperature. Rapid and quantitative substitution of the pendent vinyl groups was achieved, and zwitterionic polysiloxanes of narrow molecular weight distribution were obtained. The PC‐ and SB‐substituted polymers were found to be readily soluble in pure, salt‐free water. Critical micelle concentrations (CMCs) of these polymers in water were measured using a pyrene fluorescence probe, with CMC values estimated to be <0.01 g/L. Polymer aggregates were studied by dynamic light scattering, and the micelles generated from the PC block copolymers were visualized, after drying, by transmission electron microscopy. Aqueous solutions of these zwitterionic polysiloxanes significantly reduced the oil‐water interfacial surface tension, functioning as polymer amphiphiles that lend stability to oil‐in‐water emulsions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 127–134  相似文献   

12.
Abstract

The interaction of [Ru(η6-arene)(μ-Cl)Cl]2 and Ir(η5-C5Me5)(μ-Cl)Cl]2 with a new Ionic Liquid-based phosphinite ligand, [(Ph2PO)-C6H9N2Ph]Cl, (2) gave [Ru((Ph2PO)-C6H9N2Ph)(η6-p-cymene)Cl2]Cl (3), [Ru((Ph2PO)-C6H9N2Ph)(benzene)Cl2]Cl (4) and [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5), complexes. All the compounds were characterized by a combination of multinuclear NMR and IR spectroscopy as well as elemental analysis. Furthermore, the Ru(II) and Ir(III) catalysts were applied to asymmetric transfer hydrogenation of acetophenone derivatives using 2-propanol as a hydrogen source. The results showed that the corresponding alcohols could be obtained with good activity (up to 55% ee and 99% conversion) under mild conditions. Notably, [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5) is more active than the other analogous complexes in the transfer hydrogenation (up to 81% ee).  相似文献   

13.
The established standard ketone hydrogenation (abbreviated HY herein) precatalyst [Ru(Cl)(2)((S)-tolbinap)[(S,S)-dpen]] ((S),(S,S)-1) has turned out also to be a precatalyst for ketone transfer hydrogenation (abbreviated TRHY herein) as tested on the substrate acetophenone (3) in iPrOH under standard conditions (45 degrees C, 45 bar H(2) or Ar at atmospheric pressure). HY works at a substrate catalyst ratio (s:c) of up to 10(6) and TRHY at s:c<10(4). Both produce (R)-1-phenylethan-1-ol ((R)-4), but the ee in HY are much higher (78-83 %) than in TRHY (4-62 %). In both modes, iPrOK is needed to generate the active catalysts, and the more there is (1-4500 equiv), the faster the catalytic reactions. The ee is about constant in HY and diminishes in TRHY as more iPrOK is added. The ketone TRHY precatalyst [Ru(Cl)(2)((S,S)-cyP(2)(NH)(2))] ((S,S)-2), established at s:c=200, has also turned out to be a ketone HY precatalyst at up to s:c=10(6), again as tested on 3 in iPrOH under standard conditions. The enantioselectivity is opposite in the two modes and only high in TRHY: with (S,S)-2, one obtains (R)-4 in up to 98 % ee in TRHY as reported and (S)-4 in 20-25 % ee in HY. iPrOK is again required to generate the active catalysts in both modes, and again, the more there is, the faster the catalytic reactions. The ee in TRHY are only high when 0.5-1 equivalents iPrOK are used and diminish when more is added, while the (low) ee is again about constant in HY as more iPrOK is added (0-4500 equiv). The new [Ru(H)(Cl)((S,S)-cyP(2)(NH)(2))] isomers (S,S)-9 A and (S,S)-9 B (mixture, exact structures unknown) are also precatalysts for the TRHY and HY of 3 under the same conditions, and (R)-4 is again produced in TRHY and (S)-4 in HY, but the lower ee shows that in TRHY (S,S)-9 A/(S,S)-9 B do not lead to the same catalysts as (S,S)-2. In contrast, the ee are in accord with (S,S)-9 A/(S,S)-9 B leading to the same catalysts as (S,S)-2 in HY. The kinetic rate law for the HY of 3 in iPrOH and in benzene using (S,S)-9 A/(S,S)-9 B/iPrOK or (S,S)-9 A/(S,S)-9 B/tBuOK is consistent with a fast, reversible addition of 3 to a five-coordinate amidohydride (S,S)-11 to give an (S,S)-11-substrate complex, in competition with the rate-determining addition of H(2) to (S,S)-11 to give a dihydride [Ru(H)(2)((S,S)-cyP(2)(NH)(2))] (S,S)-10, which in turn reacts rapidly with 3 to generate (S)-4 and (S,S)-11. The established achiral ketone TRHY precatalyst [Ru(Cl)(2)(ethP(2)(NH)(2))] (12) has turned out to be also a powerful precatalyst for the HY of 3 in iPrOH at s:c=10(6) and of some other substrates. Response to the presence of iPrOK is as before, except that 12 already functions well without it at up to s:c=10(6).  相似文献   

14.
Antidepressant duloxetine (1) was prepared via asymmetric transfer hydrogenation of 3-(dimethylamino)-1-(thiophen-2- yl)propan-1-one (3). The Ru(Ⅱ), Rh(Ⅲ) and Ir(Ⅲ) complexes of several chiral ligands were examined as the catalyst and (S,S)-N-tosyl-1,2-diphenyl ethylenediamine (TsDPEN)-Ru(Ⅱ) complex was found to provide good yield and excellent enantioselectivity. 2007 Ming Yan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.  相似文献   

15.
A series of novel neutral mononuclear rhodium(I) complexes of the P―NH ligands have been prepared starting from [Rh(cod)Cl]2 complex. Structural elucidation of the complexes was carried out by elemental analysis, IR and multinuclear NMR spectroscopic data. The complexes were applied to the transfer hydrogenation of acetophenone derivatives to 1‐phenylethanol derivatives in the presence of 2‐propanol as the hydrogen source. Catalytic studies showed that all complexes are also excellent catalyst precursors for transfer hydrogenation of aryl alkyl ketones in 0.1 m iso‐PrOH solution. In particular, [Rh(cod)(PPh2NH―C6H4―4‐CH(CH3)2)Cl] acts as an excellent catalyst, giving the corresponding alcohols in excellent conversion up to 99% (turnover frequency ≤ 588 h?1). Furthermore, rhodium(I) complexes have been used in the formation of organic–inorganic heterojunction by forming their thin films on n‐Si and evaporating Au on the films. It has been seen that the structures have rectifying properties. Their electrical properties have been analyzed with the help of current–voltage measurements. Finally, it has been shown that the complexes can be used in the fabrication of temperature and light sensors. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
首次报道了(1R,2S)-二苯基乙二胺,(1S,2R)-环己二胺,(R)-(+)-联二萘胺与甲酰基二茂铁反应,生成三个具有C~2对称性的手性二茂铁Schiff碱1,2,3,通过IR,^1HNMR,元素分析和旋光度测定确定其结构。并且将其作为配体,分别与Rh,Ir,Ru等过渡金属“原位”形成配合物对苯乙酮的不对称氢转移反应进行了研究,考察了反应条件,配体结构对反应和产物构型的影响。  相似文献   

17.
A new polyethylene glycol‐supported chiral monosulfonamide was synthesized from (R,R)‐1,2‐diaminocyclohexane and shown to act as a ligand for ruthenium(II)‐catalyzed asymmetric transfer hydrogenation of aromatic ketones in neat water using sodium formate as the hydrogen source. Good enantioselectivities were obtained and the catalyst could be easily separated from the reaction mixture and reused several times. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Catalytic transfer hydrogenation (CTH) of various aldehydes and ketones was studied using iron phthalocyanine catalyst, in order to substitute the typically used rare transition metals (Ir, Rh, Ru) with an easily available and less expensive metal. Iron phthalocyanine was found to be an efficient hydrogenation catalyst and its immobilized version was successfully prepared. The immobilized iron phthalocyanine was also active in the CTH reaction of various carbonyl compounds, and it was easy to handle and possible to recycle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Preparation and study of a series of copolymers incorporating 2‐vinyl‐4,4‐dimethylazlactone (VDMA) is reported. The reactivity ratios for photo‐initiated free radical copolymerization of VDMA with methacrylic acid (MAA), acrylic acid (AA), acrylamide (AAm), dimethylacrylamide (DMAA), hydroxyethyl methacrylate (HEMA), methoxy poly(ethylene glycol) methacrylate (MPEG300MA), and 2‐methacryloyloxyethyl phosphorylcholine (MPC), were determined by fitting comonomer conversion data obtained by in situ 1H NMR to a terminal copolymerization equation. Semi‐batch photo‐copolymerizations were then used to synthesize the corresponding VDMA copolymers with constant composition. Their solubility and dissolution behavior, as well as their hydrolysis half‐lives under physiological conditions, were determined. P(VDMA‐co‐MAA) copolymers with 52 to 93 mol % VDMA showed decreasing initial solubility and increasing hydrolysis half‐lives with increasing VDMA content. VDMA copolymers with nonionic monomers AAm and DMAA were water soluble only at VDMA contents of 41 and 22 mol % or less, respectively, and showed longer hydrolysis half‐lives than comparable MAA copolymers. VDMA copolymers with HEMA and MPEG300MA were found to crosslink during storage, so their hydrolysis half‐lives were not determined. VDMA copolymers with 18% zwitterionic MPC showed a much longer half‐life and superior initial solubility compared to analogous p(VDMA‐co‐MAA), identifying this copolymer as a promising candidate for macromolecular crosslinkers in, for example, aqueous layer‐by‐layer co‐depositions with polyamines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Novel water‐soluble analogues of Noyori's (R,R)‐N‐(p‐tolylsulfonyl)‐1,2‐diphenylethyl‐ enediamine and Knochel's (R,R)‐N‐(p‐tolylsulfonyl)‐1,2‐diaminocyclohexane, containing an additional quaternary ammonium group, have been synthesized. The ruthenium catalysts prepared in situ by reacting chiral monosulfonamides with [RuCl2(p‐cymene)]2 afforded high conversion rates and enantiomeric excess (ee) values in the asymmetric transfer hydrogenation of aromatic ketones in aqueous HCOONa. Furthermore, the catalyst could be easily recovered and reused at least five times without obvious loss of ee value. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:505–514, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20641  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号