首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magnetization processes and magnetic phase diagrams have been studied in magnetic fields applied along the three main crystallographic directions of the cubic cell in TmGa3. Large magnetization jumps occur at well-defined critical fields. Each of the corresponding magnetic phases has been characterized by means of neutron diffraction on monocrystalline samples. They are shown to be stabilized by antiferroquadrupolar pair interactions within the trigonal symmetry which favours multiaxial spin arrangements: in the spontaneous triple q-structure, the spins point along the four threefold axes. A comparison with the magnetic properties of dysprosium intermetallic compounds within the CsCl-type structure is given. The difficulties of studying antiferroquadrupolar interactions and orderings in rare earth intermetallics are then underlined.  相似文献   

2.
The shifts of the magnetic and charge ordering transition temperatures caused by Nd substitution for Y in Nd2/3Ca1/3MnO3 CMR narrow-band perovskite manganite have been studied. At low temperatures, three different long-range magnetic orderings consistent with a phase separation scenario have been observed in the doped compound (Nd0.9Y0.1)2/3Ca1/3MnO3 by neutron-diffraction study: the antiferromagnetic orderings of PCE and DE types existing below ∼110 and ∼60 K, respectively, and the ferromagnetic one of B type existing below ∼42. Magnetic phase transformations temperatures as well as those of charge ordering have been found to be structural-dependent. Y-doping leads to the decrease of the anisotropy of the orthorhombic Pnma crystal lattice b/√2c, which causes a decrease of the indirect exchange parameters in the system and thus a decrease in the magnetic transformation temperatures for 20-30 K in the doped compound. Doping leads as well to the higher level of the coherent Jahn-Teller distortions of the MnO6 octahedra in the 200-300 K temperature region, which results in the increase of the charge ordering temperature for ∼80 K.  相似文献   

3.
RMn2O5 (R=lanthanide, Bi, Y) multiferroic compounds are intensively studied for their potential application in the spintronic field. In these systems, the key issue is to understand the origin of the strong coupling between the ferroelectric and magnetic orders and to investigate the influence of the nature of the R ions in this coupling. While the phase diagram of RMn2O5 compounds with small R size is well established, this of large R size compounds is missing due to the lack of samples originating with difficulties of synthesis. We present in this paper the first investigation of the thermodynamic, structural and magnetic properties of high quality polycrystalline PrMn2O5 samples. Our work shows that PrMn2O5 presents two magnetic transitions corresponding to commensurate magnetic orderings. We also evidence a weak lattice effect coupled to the magnetic order. Our results point out that the physical properties of PrMn2O5 differ from those of the parent compounds with magnetic R ions.  相似文献   

4.
Superconductivity and ferromagnetic ordering are two antagonistic types of ordering, and their mutual influence leads to many interesting phenomena which have been studied recently in ternary compounds. Theoretical analysis of ferromagnetic materials which are type II superconductors near the superconducting transition point T cl shows that they become type I near the magnetic transition point T M. The proposed theory constructed for the case T M « T cl predicts the formation of a transverse domain-like (DS phase) magnetic structure below T M. The electronic spectrum appears to be gapless in the DS phase of clean compounds with a re-entrant transition. The change from type II to type I behaviour as the sample is cooled to T M has been observed in ErRh4B4. Experimental data for HoMo6S8, HoMo6Se8 and ErRh4B4 give evidence for the coexistence of super-conductivity and non-uniform magnetic ordering below T M. Mutual influence of superconducting and magnetic orderings is also studied.  相似文献   

5.
Magnetic phase transitions in rare earth intermetallic compound Nd7Rh3 have been investigated using a single crystal. Measurement results of magnetization, magnetic susceptibility, specific heat, and electrical resistivity reveal that Nd7Rh3 has two magnetic phase transitions at TN=34 K, Tt2=9.1 K and a change of the magnetic feature at Tt1=6.8 K in the absence of an external magnetic field. Antiferromagnetic orderings exist in all the three magnetic states; a large magnetic anisotropy between the c-axis and the c-plane is observed. In the magnetic phase below Tt2, an irreversible field-induced magnetic phase transition takes place in the c-plane; after removing external magnetic field, a coexistence state of ferro- and antiferromagnetic ordering or a ferrimagnetic state having a remanent magnetization MR is stabilized. The MR decays to a certain value for several hours after the first process; a magnetic field cooling effect was also observed in the c-plane below Tt2. In the antiferromagentic state above Tt2, the irreversibility disappears and an ordinary antiferromagnetic state takes place. As the origin of this phenomenon, a kind of martensitic structural transition that is observed in Gd5Ge4 can be considered.  相似文献   

6.
In this article, we briefly review spin, charge, and orbital orderings in iron-based superconductors, as well as the multi-orbital models. The interplay of spin, charge, and orbital orderings is a key to understand the high temperature superconductivity. As an illustration, we use the two-orbital model to show the spin and charge orderings in iron-based superconductors based on the mean-field approximation in real space. The typical spin and charge orderings are shown by choosing appropriate parameters, which are in good agreement with experiments. We also show the effect of Fe vacancies, which can introduce the nematic phase and interesting magnetic ground states. The orbital ordering is also discussed in iron-based superconductors. It is found that disorder may play a role to produce the superconductivity.  相似文献   

7.
G. Paw?owski 《Physica A》2009,388(7):1111-1119
The problem of order-order and order-disorder transitions in the system described by the 2D antiferromagnetic Blume-Capel model in the presence of a magnetic field is studied by the Wang and Landau flat-histogram simulation method and by the classical Monte Carlo. Anomalous thermodynamic characteristics in low temperatures indicate different type orderings in finite temperatures. The existence of pure antiferromagnetic phases as well as mixed state is shown by detailed phenomenological analysis of the system. The border lines on the phase diagram between various orderings are determined by the complementary microscopic study of the percolation problem for c(2×2) elementary structures of antiferromagnetic ordered phases. This new approach has also shown a full agreement between the percolation threshold for the cluster of mixed phase and the critical temperature of the ordered system.  相似文献   

8.
9.
A statistical thermodynamic model of phase transformations caused by the cooperative Jahn-Teller effect in spinels containing two types of Jahn-Teller cations has been proposed. It has been shown that the specific features of the phase diagrams of compounds similar to Cu1 ? x Ni x Cr2O4, such as the presence of one orthorhombic and two anti-isostructural tetragonal phases, are associated with the competition between orderings of the subsystems of tetrahedra distorted due to the Jahn-Teller effect. The degree and character of the ordering of each subsystem of the solid solution have been determined. The main factors responsible for the thermodynamic properties and phase diagrams, in particular, the conditions for splitting of an isolated critical point into two triple points, have been investigated.  相似文献   

10.
Spin and chirality orderings of the three-dimensional Heisenberg spin glass are studied under magnetic fields in light of the recently developed spin-chirality decoupling-recoupling scenario. It is found by Monte Carlo simulations that the chiral-glass transition and the chiral-glass ordered state, which are essentially of the same character as their zero-field counterparts, occur under magnetic fields. The implication to the experimental phase diagram is discussed.  相似文献   

11.
The layered rare earth (RE) disilicides RE3Si5 with RE = Y, Er, Tm, YbandLu have been studied by means of ac magnetic susceptibility and ac electrical resistance measurements. Evidence for magnetic orderings have been found at 4.4K, 3.1K and 1.7K for Er3Si5 and at 2.1K for Tm3Si5. The resistance of Lu3Si5 was observed to drop abruptly below 7K, possibly indicating the presence of a superconducting phase. An apparent correlation was noted between the value of the room temperature resistivity and the amount of negative curvature observed in the resistivity above ~ 50K in these materials.  相似文献   

12.
The temperature dependences of the elastic modulus in multiferroics-magnetoelectrics are analyzed, in which magnetic and ferroelectric orderings appear as the result of two successive phase transitions. The analytical relationships for the elastic modulus near the phase transitions to ordered states are obtained for the cases of either linear-quadratic or biquadratic contributions to magneto- and electroelastic coupling. The explicit dependence of the elastic modulus in the multiferroic phase on the magnetoelectric coupling constant was found. It is shown that the characteristic elastic properties in multiferroics can be treated using the Landau theory without taking into account fluctuations. The analysis includes changes in the phase diagrams due to the magneto- and electroelastic coupling.  相似文献   

13.
The coupling between electric ordering and magnetic ordering in two-dimensional(2D) materials is important for both fundamental research of 2D multiferroics and future development of magnetism-based information storage and operation. Here, we introduce a scheme for realizing a magnetic phase transition through the transition of electric ordering. We take CuMoP_2S_6 monolayer as an example, which is a member of the large 2D transitionmetal chalcogen-phosphates family. Based on first-principles calculations, we find that it is a multiferroic with unprecedented characters, namely, it exhibits two different phases: an antiferroelectric-antiferromagnetic phase and a ferroelectric-ferromagnetic phase, in which the electric and magnetic orderings are strongly coupled. Importantly, the electric polarization is out-of-plane, so the magnetism can be readily switched by using the gate electric field. Our finding reveals a series of 2D multiferroics with special magnetoelectric coupling, which hold great promise for experimental realization and practical applications.  相似文献   

14.
Magnetoelectric interactions have been investigated in a single crystal of gadolinium iron borate GdFe3(BO3)4, whose macroscopic symmetry is characterized by the crystal class 32. Using the results of this study, the interplay of magnetic and electric orderings occurring in the system has been experimentally revealed and theoretically substantiated. The electric polarization and magnetostriction of this material that arise in spin-reorientation transitions induced by a magnetic field have been investigated experimentally. For Hc and Hc, H-T phase diagrams have been constructed, and a strict correlation between the changes in the magnetoelectric and magnetoelastic properties in the observed phase transitions has been ascertained. A mechanism of specific noncollinear antiferroelectric ordering at the structural phase transition point was proposed to interpret the magnetoelectric behavior of the system within the framework of the symmetry approach in the entire temperature range. This ordering provides the conservation of the crystal class of the system when the temperature decreases to the antiferroelectric ordering point. The expressions that have been obtained for the magnetoelectric and magnetoelastic energy describe reasonably well the behavior of gadolinium iron borate observed experimentally.  相似文献   

15.
A comparative analysis of the copper and iron ions bonds exchange energies was conducted for various variants of orderings and distributions of iron ions among crystallographic positions in ludwigite Cu2FeBO5. Analysis showed that the exchange bonds of iron ions play a key role in the formation of magnetic order. The magnetic ordering strongly depends on the distribution of iron ions among the positions. In the case when the Fe3+ is in the same position as in Fe3BO5, the most favorable magnetic structure is similar to the magnetic structure of ludwigite Fe3BO5. In other cases, the type of magnetic ordering is different.  相似文献   

16.
《Physics letters. A》1996,223(4):267-272
The effects of a magnetic field on a modulated phase are studied. A modulated phase is found to have two critical fields H1 and H2. For a large enough magnetic field, H1 and H2 can be approximated by a linear law. As a result, the minimum magnetic field needed to destroy a modulated phase is a constant. The minimum magnetic field also greatly depends on the order of a commensurate phase. A very high order commensurate phase and an incommensurate phase cannot survive a magnetic field. The behaviour of a magnetoelastic chain in a magnetic field can be described by a harmless devil's staircase. The inverse temperature is found to play a role similar to that of a special magnetic field. The deeper physics underlying these new phenomena is the breaking of the left-right symmetry of a phase diagram. As a result a controllable path to a modulated phase is found.  相似文献   

17.
18.
Polycrystalline TbMn2O5 was prepared by the standard solid-state reaction method and characterized by powder X-ray diffraction and magnetization to assure it is of single phase. Heat capacity measurements on the compound reveal an antiferromagnetic phase transition at 45 K. A broad peak below 6 K in the heat capacity measurements corresponds to the crossover transition of Tb3+ ordering. To confirm these magnetic orderings, neutron powder diffractions on TbMn2O5 with XYZ neutron polarization analysis were performed at the diffuse neutron scattering (DNS) spectrometer, FRJ-II, by using neutron wavelength of 4.8 Å in the temperature range of 1.8–250 K. Magnetic scattering was separated from nuclear coherent and spin incoherent scattering contributions. Long-range ordered magnetic peaks were observed below 39 K which is consistent with the heat capacity results. The drastic increasing intensities below 6 K indicate the ferromagnetic transition in Tb3+ orderings.  相似文献   

19.

The electrical resistivity of a UPdSn single crystal exerted to various hydrostatic pressures was measured as a function of temperature and magnetic field. Clear anomalies in the temperature dependence of resistivity along the c-axis mark the magnetic phase transitions between paramagnetic and antiferromagnetic (AF) state at T N and the AF1?AF2 transition at T 1. Large negative magnetoresistance effects have been observed not only in the AF state as a result of the metamagnetic transition to canted structure at B c , but also at temperatures far above T N . The latter result is attributed to the existence of AF correlations or short range AF orderings in the paramagnetic range. The value of T N increases with increasing applied pressure, whereas T 1 simultaneously decreases. It is also found that B c decreases with increasing pressure. As a consequence, the stability range of the AF-1 phase expands with applied pressure partially on account of the ground-state AF-2 phase.  相似文献   

20.
Magnetic characteristics of SmMn2Ge2 with a layer structure have been studied by magnetization measurements using single crystal. In the sequence of decreasing temperature, ferromagnetism is observed at 196 K ? T ? 348 K, collinear antiferromagnetism becomes stable for 64 K ? T < 196 K and reentrant ferromagnetism appears below 64 K. The appearance of such successive magnetic orderings are attributed to the variation of the shortest Mn-Mn distance due to thermal expansion and the existence of ferromagnetic coupling between the Sm moments in the intralayer which is dominant at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号