首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 42Ca(α, 3He)43Ca reaction has been studied at 36 MeV incident energy. Angular distributions have been measured from 4° to 42° using a split-pole spectrometer and position sensitive Si detectors, for about 40 levels located up to 6 MeV excitation energy. A local zero-range DWBA analysis has been carried out; l = 3 and 4 assignments are tentatively proposed for levels located above 4 MeV excitation energy, indicating a strong fragmentation of the 1f52 strength between 4 and 6 MeV and the location of the main component of the 1g92 strength above 6 MeV. A number of weakly excited levels cannot be reproduced by DWBA analysis. Their angular distributions have been compared with the results of coupled-reaction-channel calculations assuming two-step excitation of weak coupling states with a [42Ca1 ? f72 structure. A reasonable agreement has been obtained, confirming that the two-step process cannot be neglected in the analysis of the (α, 3he) reaction.  相似文献   

2.
Energy levels in 40Ca up to 10.2 MeV have been studied in the neutron pickup reaction 41Ca(τ, α)40Ca with 20 MeV bombarding energy. Thirty excited states have been identified and angular distributions have been measured in the interval from 5° to 40° by means of a split-pole magnetic spectrometer. The angular distributions together with DW calculations have been used to extract ln values and spectroscopic factors. The ln = 2 strength distribution for the f72d32?1 particle-hole levels is compared to the lp = 3 strength distribution from pr stripping data.  相似文献   

3.
The reaction 12C(7Li, t)16O has been studied at E(7Li) = 34 MeV with the LASL tandem accelerator and QDDD magnetic spectrometer. Angular distributions to levels with Ex < 11 MeV have been obtained from 0° to 90°, including 0°. The results have been analyzed with finite-range distorted-wave Born approximation theory. The α-particle spectroscopic factors and reduced widths obtained are compared with those calculated with group theory (SU(3)) and other models. The analysis of data for the 7.1 and 9.6 MeV Jπ = 1? levels, which are of great importance in stellar helium buring, yields a ratio, R, of dimensionless reduced α-widths θ2a(7.1 MeV)θ2a(9.6 MeV) = 0.35b ± 0.13. The observed line width of the 9.6 MeV level (Γc.m. = 390 ± 60 keV) is less than the accepted value (Γc.m. = 510 ± 60 keV) and implies θ2a(9.6 MeV) ≈ 0.6. These results as well as data for the 6.92 MeV Jπ = 2+ and 10.35 MeV Jπ = 4+ “α-cluster” states indicate 0.09 < θ2a(7.1 MeV) < 0.33 with a mean value θ2a(7.1 MeV) = 0.14 ± 0.04. The implication for stellar helium burning is discussed.  相似文献   

4.
Angular distributions have been measured for transitions to low-lying states in 143Pm and 145Eu populated by the 142Nd(7Li, 6He)143 and the 144Sm(7Li, 6He)145Eu reactions at E(7Li) = 52 MeV. Elastic scattering of 7Li at 52 MeV on 142Nd and 144Sm, and 6Li at 46 MeV on 142Nd and at 45 MeV on 144Sm, were measured. Optical-model parameters extracted from fits to the scattering data were used in a finite-range DWBA analysis of the angular distributions for levels below 1.40 MeV excitation energy in 143Pm and 1.84 MeV in 145Eu. The reaction cross sections forward of 6° c.m. allow unambiguous distinction to be made between 2d52 and 2d32 final states. Final-state spins have been assigned to d-states in 143Pm at 1.40 MeV(32+)and in 145Eu at 1.042 MeV (32+). Existing assignments to other levels in both residual nuclei have been confirmed.  相似文献   

5.
The reactions 72, 74, 76Ge(3He, d) were investigated at Elab = 23 MeV with a multigap and a Q3D magnetic spectrograph. Some 30 new levels up to E1 ≈ 4 MeV have been found. The level schemes of the odd As isotopes 73, 75, 77As up to E1 ≈ 4 MeV seem to be rather independent of the neutron number. The good agreement of the low-lying level structure with the Coriolis-coupling model including a pairing force was verified and the vacancies of low-lying shell model states were extracted and compared with the simple pairing theory.  相似文献   

6.
Resonances were found in the 120° and 160° excitation functions for the 19F(α, po)22Ne reaction between E = 2.5 and 5.0 MeV corresponding to 23Na levels at excitation energies between 12.56 and 14.51 MeV. Twenty-one on-resonance angular distributions were analysed with single-level and two-level theory to extract 23Na spin and parity information. The results of an earlier experiment were analysed by the same procedure, extending the diagnostics down to a 23Na excitation energy of 11.55 MeV. The analysis incorporated an optical potential for the α-particle consistent with previous channel-spin-12 reaction studies and α-induced reaction data.  相似文献   

7.
The differential cross section, the vector- and the tensor-analyzing powers of the reaction 2H(d, p)3H have been measured. The polarization data were obtained at 11 energies between 1.0 and 13 MeV at lab angles between 5° and 160°. The data were fitted with Legendre polynomials and the resulting coefficients analyzed for resonances in 4He. Overwhelming evidence for a 1? level at 24.1 MeV and a strong indication of a 4+ level at 24.6 MeV excitation energy have been found.  相似文献   

8.
The proton transfer on 40K has been studied with the 40K(3He, d)41Ca reaction at 13 and 21 MeV bombarding energy and with the 40K(d, n)41Ca reaction at 6.5 MeV bombarding energy. The energy and angular distribution of outgoing particles have been measured. For transitions to 62 levels in 41Ca the l-values and spectroscopic factors have been derived with DWBA. The excitation energies of levels populated with l = 3 and the qualitative distribution of transfer strength strongly suggest their interpretation as 2p-1h states of the f722d32?1 configuration with weak coupling between the particle pair and the hole. The high-spin states of this configuration (with Jπ up to 152+) are preferentially excited.  相似文献   

9.
The polarization of 21 MeV 3He elastically scattered from 27Al and 28Si has been measured in an angular range of θlab = 25°–55°. Differential cross-section data have been obtained out to angles of approximately 100°. The small values observed in the polarization distributions differ somewhat from optical-model predictions based on fits to the differential cross-section data and cannot be used to obtain significant information about the optical-model spin-orbit potential. It is concluded that statistically significant, non-zero 3He polarization measurements will not be possible using traditional double scattering techniques for 3He energies ≦ 27 MeV and targets of Z ≧ 13.  相似文献   

10.
Differential cross-section excitation functions at lab scattering angles 86.9°, 120.0°, 140.0° and 160.0° were measured for 9Be(p, po)9Be, 9Be(p, p2)9Be and 9Be(p, d0)8Be at proton lab energies from 6 to 15 MeV in 100 keV steps. A broad anomaly was observed in the 9Be(p, p0)9Be excitation functions. Differential cross-section angular distributions were measured for 9Be(p, p0)9Be and 9Be(p, p2)9Be at lab energies of 13.0, 14.0, 15.0, 21.35 and 30.3 MeV and for 9Be(p, d0)8Be at 13.0, 14.0, 15.0 and 21.35 MeV. Angular distributions of polarization analysing powers for 9Be(p,p0)9Be, 9Be(p, p2)9Be and 9Be(p, d0)8Be were measured at 8.0, 11.0, 12.0, 13.0 and 15.0 MeV. A spherical optical-model (SOM) analysis of the elastic scattering angular distribution data from 13.0 to 30.3 MeV showed that an energy dependence of only VR and Ws (volume real and surface imaginary depths) is sufficient to reproduce the measurements. Coupled-channels (CC) analyses were made with a quadrupole-deformed optical-model potential and strong coupling of 32?, 52? and 72? levels of a K = 32 ground-state rotational band of 9Be. The 9Be(p, p0)9Be and 9Be(p, p2)9Be data from 13.0 to 30.3 MeV were analyzed simultaneously at each energy, varying only VR and Ws with energy, for a potential deformation of β = 1.1. Both SOM and CC analyses indicated the same energy dependence in VR, while Ws averaged 3.5 MeV lower in CC than in SOM, with both energy dependences consistent with previous analyses of nucleon scattering from 1p shell nuclei.  相似文献   

11.
The tensor analyzing power fzz has been measured for the 3He(d, p)4He reaction at 0 = 0° over an incident deuteron energy range Ed = 6.6–15.8 MeV in steps of 0.5 MeV. The present results agree with and extend the previous measurements of Grüebler et al. The present results indicate that this reaction is a very good tensor analyzer for polarized deuteron beams with energies up to 15.8 MeV.  相似文献   

12.
The nucleus 11B has been studied over the excitation energy range from 8.5 MeV to 21.5 MeV with the 9Be(3He, p)11B / reaction at / E3He = 38 MeV. The analogs of the parent states in 11Be have been located at 12.56, 12.92, 14.40, 16.44, 17.69, 18.0, 19.15 and 21.27 MeV. A complementary measurement with the 9Be(α, d)11B reaction at Eα = 48 MeV demonstrates that the 16.44, 17.69, 18.0 and 19.15 MeV resonances have rather pure isospin Tf = 32. The 14.40 MeV state is a strongly isospin-mixed analog of the 52+1.78 MeV state in 11Be. It is argued that spin S = 1 transfer is involved in the excitation of the 16.44 MeV state and its 3.887 MeV parent in 11Be in a two-step stripping process. The Tf = 12 states and the lowest three Tf = 32 states are compared with the predictions of DWBA utilizing shell-model form factors. It is concluded that the Tf = 12 strength is more strongly fragmented than is implied by the calculations of Teeters and Kurath.  相似文献   

13.
The 68Zn(d, α)66Cu reaction populating low-lying states in 66Cu has been studied at θlab = 4° using deuteron beams in the energy range 9.0 to 10.5 MeV. Tensor analyzing powers were calculated and natural- or unnatural-parity assignments were made for thirteen states in 66Cu. By combining these results with existing limits unambiguous Jπ assignments of 2+, 2+, 2+ and 1+ have been made for the levels at 186, 465, 822 and 1344 keV respectively. The previous tentative assignments to seven other levels have been confirmed while that for the 1247 keV level has been shown to be incorrect. The identification of the quartet of levels based on the π(P32)v(f52) configuration has been confirmed.  相似文献   

14.
The 20Ne(3He, n) reaction leading to the ground state of 22Mg has been investigated in the 3He+ energy range of 2.6 to 4.0 MeV. Angular distributions were determined with a neutron time-of-flight spectrometer at average incident energies (lab) of 3.27, 3.69, and 4.01 MeV between 0° and 120° (lab). Excitation functions for the energy region were measured at 0° and 80° (lab). The observed differential cross sections are explained by coherent contributions from direct interaction and compound-nucleus formation. A spectroscopic factor was extracted for the DWBA calculation from the absolute cross-section measurements and found to be ? = 0.43±0.21. Resonances in the compound-nucleus formation were found at 3.00 and 3.33 MeV (c.m.) with widths of 0.28 and 0.21 MeV and spins of 52+and12?, respectively.  相似文献   

15.
Angular distributions of protons from the 12C(α, p)15N reaction have been measured over the angular range from 10–70° at an α-particle bombarding energy of 96.8 MeV. Well defined particle groups are observed up to an excitation energy of 18 MeV in 15N. The relatively small number of states excited implies a selectivity both in the reaction mechanism and in structure effects. DWBA calculations using a semi-microscopic three-nucleon form factor have been performed using several different sets of wave functions. Good agreement in the ratio σexp/σth is obtained for most states using the 15N wave functions of de Meijer. The strongest state in the (α, p) spectrum is observed at 15.397 MeV in 15N and DWBA calculations give good agreement for a 132+ assignment. This state has been observed only in other three-nucleon transfer reactions involving heavy ions. The recent discovery of a 92+ state at 10.693 MeV in a p+14C resonance measurement is supported by our analysis.  相似文献   

16.
The differential cross section and polarization for neutrons scattered from 10B have been measured at En = 2.63 MeV (Ex = 13.85 MeV). The results of this experiment and other available neutron scattering data in the range 1 < En < 4 MeV are interpreted through a single-level R-matrix calculation over the region 12 < Ex < 15 MeV. Based on this analysis the most probable Jπ assignment for the 14.0 MeV level in 11B is 112+. The anomaly near Ex = 13.1 MeV can only be explained in terms of two overlapping levels having assignments of (52, 72)? and (32, 52, 72)+.  相似文献   

17.
The 91Zr(d, 3He) reaction was studied at a deuteron energy of 28 MeV. Angular distributions were measured from 13° to 47°; lp values were extracted for the prominent lines of 90Y. The lp values and transition strengths were determined by DWBA analysis. The angular distributions for the p12)(νd52) doublet (g.s. and 0.20 MeV state) exhibit the characteristic l = 1 shape. States at 1.42, 1.57, 1.64 and 1.81 MeV were also populated strongly in the (d, 3He) reaction; the 1.42, 1.57 and 1.81 MeV levels contain l= 1 transition strength and are most likely members of the p32?1)(νd52) multiplet. The 2.03 MeV state has a characteristic l = 3 angular distribution and is suggested to be the only member of the f32?1)(νd52) sextet to be unambiguously observed in this study, most probably the 5? or 4? member. The members of the g52)(νd92) sextet were populated weakly (less than 100 μb/sr) in this reaction.  相似文献   

18.
Energy levels in 42Ca up to 7.8 MeV have been studied in the neutron capture reaction 41Ca(d, p)42Ca with 12 MeV bombarding energy. Ninety-four excited states have been identified and angular distributions have been measured in the interval from 5° to 110° by means of a broad-range magnetic spectrograph. The angular distributions together with DW calculations have been used to determine In values and spectroscopic factors. The f72 strength sum agrees with shell-model expectations if the f72 spectroscopic factors are renormalized by 10.75, in line with other f72. transfer experiments on 40Ca and 41Ca. A similar renormalization of the ln = 1 spectroscopic factors brings this strength sum in accordance with the shell-model calculations. The effective (f722) matrix elements for 42Ca are compared with the corresponding matrix elements of 42Sc and 48Sc. The differences between the three sets of matrix elements are of the order of a few hundred keV or less. The monopole centroid energy of the (f72)2 multiplet is shifted downwards in the mass-42 nuclei compared to 48Sc, possibly indicating the importance of the monopole pairing force near 40Ca.  相似文献   

19.
The reaction 40Ca(13C, 12C)41Ca leading to the ground and low-lying 32? levels has been studied at bombarding energies of 18.5 and 19.0 MeV, close to the Coulomb barrier. The cross sections have been analysed using the DWBA with previously measured calibrations to obtain the rms radii of 1f72 and 2p32 orbits in the 41Ca levels. The rms radius of the 1f72 point neutron orbit in the ground state relative to the 40Ca core was determined to be 3.89 ± 0.12 fm. This is compared with various theoretical predictions based on Hartree-Fock theory. The 1f72 orbit radius gives the point neutron excess size to a good approximation for comparison with the value of 3.45 fm deduced from Coulomb energy differences. The consistency of the results with 40Ca(t, d)41Ca experiments using a (t/d), zero-range normalization of 3.26 × 104 MeV2 · fm3 is demonstrated, and trends in neutron size parameters through the Ca isotopes are discussed.  相似文献   

20.
The inelastic α-scattering reaction at Eα = 120 MeV with an energy resolution of 90–150 keV has been used to investigate isoscalar strength distributions in 24, 26Mg, 28Si and 40Ca. For 24, 26Mg and 28Si the E2 strength between Ex = 14 and 27 MeV is strongly fragmented. In 40Ca the E2 strength is mainly concentrated near Ex ~ 65 A13 MeV, although here the onset of fragmentation can be observed. The sum rule strength for the different multipolarities was obtained by applying for each nucleus an L-dependent normalization procedure. In this way we observed in total in 24, 26Mg, 28Si and 40Ca for excitation energies up to 27 MeV an amount of (61+8?6), (50+9?8), (38+8?6) and (94 ± 14)%, respectively, of the isoscalar E2 energy weighted sum rule (EWSR) of which (36+7?5), (28+8?7), (24+7?5) and (74 ± 12)% was found between Ex = 14 and 27 MeV. In addition isoscalar E0, E3 and E4 strength was observed in this excitation energy region. A detailed comparison has been made between the isoscalar quadrupole strength distribution observed in the 24, 26Mg(α, α') reaction and the E2 strength excitation function obtained from radiative α-capture measurements. In the low excitation energy region coupled channel effects have been observed, especially for the excitation of the 3+ states. Moreover, a considerable percentage of the 1?ω isoscalar dipole and octupole strength has been observed for excitations below 14 MeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号