首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, an orthogonal two-dimensional (2D) capillary liquid chromatography (LC) method for fractionation and separation of proteins using wide range pH gradient ion exchange chromatography (IEC) in the first dimension and reversed phase (RP) in the second dimension, is demonstrated. In the first dimension a strong anion exchange (SAX) column subjected to a wide range (10.5-3.5) descending pH gradient was employed, while in the second dimension, a large pore (4,000 A) polystyrene-divinylbenzene (PS-DVB) RP analytical column was used for separation of the protein pH-fractions from the first dimension. The separation power of the off-line 2D method was demonstrated by fractionation and separation of human plasma proteins. Seventeen pH-fractions were manually collected and immediately separated in the second dimension using a column switching capillary RP-LC system. Totally, more than 200 protein peaks were observed in the RP chromatograms of the pH-fractions. On-line 2D analysis was performed for fractionation and separation of ten standard proteins. Two pH-fractions (basic and acidic) from the first dimension were trapped on PS-DVB RP trap columns prior to back-flushed elution onto the analytical RP column for fast separation of the proteins with UV/MS detection.  相似文献   

2.
Ion exchange chromatography, an alternative to reversed‐phase (RP) chromatography, is described in this paper. We aimed to obtain optimal conditions for the separation of basic drugs because silica‐based RP stationary phases show silanol effect and make the analysis of basic analytes hardly possible. The retention, separation selectivity, symmetry of peaks and system efficiency were examined in different eluent systems containing different types of buffers at acidic pH and with the addition of organic modifiers: methanol and acetonitrile. The obtained results reveal a large influence of the salt cation used for buffer preparation and the type of organic modifier on the retention behavior of the analytes. These results were also compared with those obtained on an XBridge C18 column. The obtained results demonstrated that SCX stationary phases can be successfully used as alternatives to C18 stationary phases in the separation of basic compounds. The most selective and efficient chromatographic systems were applied for the quantification of some psychotropic drugs in fortified human serum samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Proteome profiling of crude serum is a challenging task due to the wide dynamic range of protein concentrations and the presence of high‐abundance proteins, which cover >90% of the total protein mass in serum. Peptide fractionation on strong cation exchange, weak anion exchange in the electrostatic repulsion hydrophilic interaction chromatography (ERLIC) mode, RP C18 at pH 2.5 (low pH), fused‐core fluorinated at pH 2.5, and RP C18 at pH 9.7 (high pH) stationary phases resulted in two to three times more identified proteins and three to four times more identified peptides in comparison with 1D nanoChip‐LC–MS/MS quadrupole TOF analysis (45 proteins, 185 peptides). The largest number of peptides and proteins was identified after prefractionation in the ERLIC mode due to the more uniform distribution of peptides among the collected fractions and on the RP column at high pH due to the high efficiency of RP separations and the complementary selectivity of both techniques to low‐pH RP chromatography. A 3D separation scheme combining ERLIC, high‐pH RP, and low‐pH nanoChip‐LC–MS/MS for crude serum proteome profiling resulted in the identification of 208 proteins and 1088 peptides with the lowest reported concentration of 11 ng/mL for heat shock protein 74.  相似文献   

4.
离线2D-LC-MS系统的建立及其用于人肝蛋白质组学的研究   总被引:2,自引:0,他引:2  
在蛋白质组学研究中,近年来提出的多维色谱-质谱联用技术有望成为继2D-PAGE-MS技术之后又一项重要的高通量技术平台,Yates,Davis,Wagner和Hancock等报道了二维强阳离子交换色谱-反相色谱-质谱(SCX-RPLC-MS)的在线联用分析系统,在该系统中,各维色谱的分离条件相互制约,只能从整体上加以平衡。  相似文献   

5.
The availability of robust and highly efficient separation methods represents a major requirement for proteome analysis. This study investigated the characteristics of two different gel-free proteomic approaches to the fractionation of proteolytic peptides and intact proteins, respectively, in a first separation dimension. Separation and mass spectrometric detection by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) were performed at the peptide level in both methods. Bottom-up analysis (BU) was carried out employing well established peptide fractionation in the first separation dimension by strong cation-exchange chromatography (SCX), followed by ion-pair reversed-phase chromatography (IP-RPC) in the second dimension. In the semi-top-down approach (STD), which involved intact protein fractionation in the first dimension, the separation mode in both dimensions was IP-RPC utilizing monolithic columns. Application of the two approaches to the proteome analysis of proteins extracted from a tumor tissue revealed that the BU method identified more proteins (1245 in BU versus 920 in STD) while STD analysis offered higher sequence coverage (14.8% in BU versus 17.5% in STD on average). The identification of more basic and larger proteins was slightly favored in the BU approach, most probably due to higher losses of these proteins during intact protein handling and separation in the STD method. A significant degree of complementarity was revealed by an approximately 33% overlap between one BU and STD replicate, while 33% each of the protein identifications were unique to both methods. In the STD method, peptides obtained upon digestion of the proteins contained in fractions of the first separation dimension covered a broad elution window in the second-dimension separation, which demonstrates a high degree of “pseudo-orthogonality” of protein and peptide separation by IP-RPC in both separation dimensions.  相似文献   

6.
We have developed an on-line strong cation exchange (SCX)-ESI-MS/MS platform for the rapid identification of proteins contained in mixtures. This platform consists of a SCX precolumn followed by a nanoflow SCX column on-line with an electrospray ion trap mass spectrometer. We also used this platform to study the dynamics of peptide separation/extraction by SCX, in particular to understand the parameters affecting the performance of SCX in multidimensional chromatography. For example, we have demonstrated that the buffer typically used for tryptic digestion of protein mixtures can have a detrimental effect on the chromatographic behaviour of peptides during SCX separations, thereby affecting certain peptide quantitation approaches that rely on reproducible peptide fractionation. We have also demonstrated that band broadening results when a step (discontinuous) gradient approach is used to displace peptides from the SCX precolumn, reducing the separation power of SCX in multidimensional chromatography. In contrast, excellent chromatographic peak shapes are observed when a defined (continuous) gradient is used. Finally, using a tryptic digest of a protein extract derived from human K562 cells, we observed that larger molecular weight peptides are identified using this on-line SCX approach compared to the more conventional reverse phase (RP) LC/MS approach. Both methods used in tandem complement each other and can lead to a greater number of peptide identifications from a given sample.  相似文献   

7.
Comprehensive proteomic analyses necessitate efficient separation of peptide mixtures for the subsequent identification of proteins by mass spectrometry (MS). However, digestion of proteins extracted from cells and tissues often yields complex peptide mixtures that confound direct comprehensive MS analysis. This study investigated a zwitterionic hydrophilic interaction liquid chromatography (ZIC‐HILIC) technique for the peptide separation step, which was verified by subsequent MS analysis. Human serum albumin (HSA) was the model protein used for this analysis. HSA was digested with trypsin and resolved by ZIC‐HILIC or conventional strong cation exchange (SCX) prior to MS analysis for peptide identification. Separation with ZIC‐HILIC significantly improved the identification of HSA peptides over SCX chromatography. Detailed analyses of the identified peptides revealed that the ZIC‐HILIC has better peptide fractionation ability. We further demonstrated that ZIC‐HILIC is useful for quantitatively surveying cell surface markers specifically expressed in undifferentiated embryonic stem cells. These results suggested the value of ZIC‐HILIC as a novel and efficient separation method for comprehensive and quantitative proteomic analyses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
构建了以阳离子交换色谱-反相色谱(SCX-RPLC)为分离模式的新型全二维微柱液相色谱-质谱分离平台.采用了醋酸铵缓冲液梯度洗脱,实现了第一维肽段的分步洗脱,洗脱的肽段经富集除盐后通过接口进入反相色谱微柱,通过线性梯度实现第二维进一步分离,最后进入质谱进行检测.采用此平台分析了人胃癌组织与正常组织提取蛋白质信息,其中正常胃组织鉴定蛋白质数为537个,而癌症组织鉴定蛋白质数目为506个.对胃癌和正常组织两种提取蛋白质酶解产物的蛋白质检索结果进行比较分析,将鉴定的蛋白质按照物理性质进行分布,找出正常组织与癌症组织间蛋白质差异,筛选出一种可能发生变异的癌症特有蛋白.  相似文献   

9.
Lam MP  Lau E  Siu SO  Ng DC  Kong RP  Chiu PC  Yeung WS  Lo C  Chu IK 《Electrophoresis》2011,32(21):2930-2940
In this paper, we describe an online combination of reversed‐phase/reversed‐phase (RP–RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP–RP portion of this system provides comprehensive 2‐D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP–RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11‐protein mixture, we found that the system could efficiently separate native peptides and released N‐glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP–RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A‐extracted glycoproteome from human serum; in total, 134 potentially N‐glycosylated serum proteins, 151 possible N‐glycosylation sites, and more than 40 possible N‐glycan structures recognized by concanavalin A were simultaneously detected.  相似文献   

10.
Capillary zone electrophoresis (CZE) and reverse phase high‐performance liquid chromatography (RP‐HPLC) were used for separation of diastereomers of phosphinic pseudopeptides in achiral separation media. A set of phosphinic pseudopeptides, i. e. peptides with one peptide bond substituted by phosphinic acid moiety ‐PO2‐CH2‐ derived from the structure N‐Ac‐Val‐AlaB(‐CH2)Leu‐His‐NH2 synthesized as a mixture of four diastereomers was used. Separations of diastereomers by CZE were carried out in Tris‐phosphate background electrolytes in the pH range 1.1–3.2 and at least partial separation of the four diastereomers of each pseudopeptide was achieved. A routinely used RP‐HPLC method (C18‐silica column and water/acetonitrile/trifluoroacetic acid mobile phase) was also capable of resolving the diastereomers. In addition, since individual diastereomers of majority of the pseudopeptides were isolated by RP‐HPLC it was possible to check the purity of these RP‐HPLC separated diastereomers and to compare the migration order of the diastereomers in CZE with their elution order in RP‐HPLC. The results obtained by CZE and RP‐HPLC demonstrate a complementarity of both methods in analysis and separation of phosphinic pseudopeptides including their diastereomers.  相似文献   

11.
In this study, two mixed‐mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two‐dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed‐mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed‐mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off‐line 2D‐LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine—Uncaria rhynchophylla. The two‐dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed‐mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications.  相似文献   

12.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

13.
Metal‐Coded Affinity Tags (MeCAT) reagents were devised for the absolute quantification of labeled proteins and peptides using inductively coupled plasma mass spectrometry (ICP‐MS). After the recent publication of quantification approaches for digested proteins, this work presents a multidimensional strategy for the application of MeCAT to samples which require higher chromatographic resolution. Two‐dimensional separations based on strong cation exchange (SCX) and reversed‐phase (RP) chromatography, were used for the quantification of lysozyme, bovine serum albumin and transferrin after tryptic digestion. The elution protocols were optimized to improve the resolution of the MeCAT‐labeled peptides which led to faster elutions in SCX and longer retention times in RP compared with unlabeled peptides. The optimized method provided enough resolution for the samples analyzed. Peptides losses during the whole procedure were studied. Although recoveries of greater than 90% were found in the RP dimension, important global losses in the two‐dimensional offline approach forced us to use specific internal standards, in this case MeCAT‐labeled standard peptides. External calibration and label‐specific isotope dilution analysis (IDA) were tested and compared as possible quantification techniques. While both techniques showed accurate and precise determinations, the label‐specific IDA technique resulted in more straightforward measurements and more affordable external calibrations. Finally, simultaneous quantification of three different samples labeled with different lanthanides was successfully performed demonstrating the potential of MeCAT combined with ICP‐MS for multiplexing. Electrospray ionization mass spectrometry techniques provided the structural information needed for the identification of the labeled species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
For high throughput proteome analysis of highly complex protein mixtures, we have constructed a fully automated online system for multi-dimensional protein profiling, which utilizes a combination of two-dimensional liquid chromatography and tandem mass spectrometry (2D-LC-MS-MS), based on our well-established offline system described previously [K. Fujii, T. Nakano, T. Kawamura, F. Usui, Y. Bando, R. Wang, T. Nishimura, J. Proteome Res. 3 (2004) 712]. A two-valve switching system on a programmable auto sample injector is utilized for online two-dimensional chromatography with strong cation-exchange (SCX) and reversed-phase (RP) separations. The SCX separation is carried out during the equilibration of RP chromatography and the entire sequence of analysis was performed under fully automated conditions within 4 h, based on six SCX fractionations, and 40 min running time for the two-dimensional RP chromatography. In order to evaluate its performance in the detection and identification of proteins, digests of six standard proteins and yeast 20S proteasome have been analyzed and their results were compared to those obtained by the one-dimensional reversed-phase chromatography system (ID-LC-MS-MS). The 2D-LC-MS-MS system demonstrated that both the number of peptide fragments detected and the protein coverage had more than doubled. Furthermore, this multi-dimensional protein profiling system was also applied to the human 26S proteasome, which is one of the highly complex protein mixtures. Consequently, 723 peptide fragments were identified as 31 proteasome components, together with other coexisting proteins in the sample. The identification could be comprehensively performed with a 63% sequence coverage on an average, and additionally, with modifications at the N-terminus. These results indicated that the online 2D-LC-MS-MS system being described here is capable of analyzing highly complex protein mixtures in a high throughput manner, and that it would be applicable to dynamic proteomics.  相似文献   

15.
A comprehensive two-dimensional liquid chromatographic system (2D SCX/RP) is con- structed with a 10-port-2-way valve using strong cation exchange chromatography (Hypersil SCX, 100 mm×4.6 mm I.D.) followed by reversed phase chromatography (Hypersil BDS C18, 15 mm×4.6 mm I.D.) to separate the complex peptides from globin peptic hydrolysate. After the sample was loaded on the SCX column, the phosphate buffer (pH 4.0) was used to elute the peptides. Then, elutes flowed through the interface and the peptides focused on the head of the trapping columns (Hypersil BDS C18, 15 mm×4.6 mm I.D.) but salt passed into the waste. After the valve was switched, the samples were flushed with a backward flow into the RP analytical column. The peptides on the SCX were eluted with 12 discontinuous steps linearly increasing salt concentrations. The peptides enriched on the trapping column were desalted and separated by the RP columns. The resolution and the resolved peaks of the 2D SCX/RP system were greatly increased and the total peak capacity reached as high as 2280.  相似文献   

16.
Thin silica gel layers impregnated with optically pure l ‐glutamic acid were used for direct resolution of enantiomers of (±)‐isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l ‐alanine, l ‐valine and S‐benzyl‐l ‐cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed‐phase high‐performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin‐layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)‐isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)‐isoxsuprine. The elution order in the experimental study of RP‐TLC and RP‐HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1–0.09 µg/mL in TLC while it was in the range of 22–23 pg/mL in HPLC and 11–13 ng/mL in RP‐TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
High-resolution liquid chromatography separation is essential to in-depth proteomic profiling of complex biological samples. Herein, we established an ion-pair reversed-phase×reversed-phase two-dimensional liquid chromatography (IPRP×RP 2DLC) strategy for comprehensive proteomic analysis. Both RPLC separation dimensions were performed at low pH, with trifluoroacetic acid(TFA) and formic acid(FA) as mobile phase addictive, respectively. As the good separation resolution offered by ion-pairing effect of TFA, the fractionation efficiency was greatly improved with 74.0% peptides identified in just one fraction. Comparing with conventional high pH RP fractionation, the overall separation rate of IPRP was about 1.6 times that of high-pH RP, which increased the number of identified peptides by 21%. Further, 2169 proteins and 8540 peptides were confidently identified from crude serum sample by our IPRP×RP 2DLC strategy, exhibiting great potential in clinical proteomics in the future.  相似文献   

18.
The proteome of quiescent human platelets was analyzed by a shotgun proteomics approach consisting of enzymatic digestion, peptide separation based on isoelectric point by the use of OFFgel fractionation and, finally, RP nanoscale chromatography coupled to MS/MS detection (nano-LC-MS/MS). OFFgel fractionation in the first dimension was effective in providing an additional dimension of separation, orthogonal to RP nano-LC, thus generating an off-line multidimensional separation platform that proved to be robust and easy to set up. The analysis identified 1373 proteins with high confidence (false discovery rate<0.25%). The core set of 1373 human platelet proteins was investigated by Ingenuity Pathway Analysis software from which ten canonical pathways and eight networks have been validated, to suggest that platelets behave either as inflammatory or immune cells, and plasma membrane and cytoskeleton proteins play a fundamental role in their function. Moreover, toxicity pathway in agreement with network analysis, supports the concept that platelet life span is governed by an apoptotic mechanism.  相似文献   

19.
We report a cyclic sample pooling technique devised in two‐dimensional liquid chromatography–electrospray ionization mass spectrometry (LC‐ESI‐MS) shotgun proteomics that renders deeper proteome coverage; we combined low pH reversed‐phase (RP) LC in trifluoroacetic acid in the first dimension, followed by cyclic sample pooling of the eluate and low‐pH RP‐LC in formic acid in the second dimension. The new protocol has a significantly higher resolving power suitable for LC‐ESI‐MS/MS shotgun proteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A dual-purpose sample-trapping column is introduced for the capacity enhancement of proteome analysis in on-line two-dimensional nanoflow liquid chromatography (strong cation-exchange chromatography followed by reversed-phase liquid chromatography) and tandem mass spectrometry. A home-made dual trap is prepared by sequentially packing C18 reversed-phase (RP) particles and SCX resin in a silica capillary tubing (1.5 cm x 200 microm I.D. for SCX, 0.7 cm x 200 microm for RP) ended with a home-made frit and is connected to a nanoflow column having a pulled tip treated with an end frit. Without having a separate fraction collection and concentration process, digested peptide mixtures were loaded directly in the SCX part of the dual trap, and the SCX separation of peptides was performed with a salt step elution initiated by injecting only 8 microL of NH4HCO3 solution from the autosampler to the dual trap. The fractionated peptides at each salt step were directly transferred to the RP trap packed right next to the SCX part for desalting, and a nanoflow LC-MS-MS run was followed. During the sample loading-SCX fractionation-desalting, flow direction was set to bypass the analytical column to prevent contamination. The entire 2D-LC separation and MS-MS analysis were automated. Evaluation of the technique was made with an injection of 15 microg peptide mixtures from human Jurkat T-cell proteome, and the total seven salt step cycles followed by each RPLC run resulted in an identification of 681 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号