共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pengchong Xue Dr. Ran Lu Prof. Xinchun Yang Li Zhao Defang Xu Yan Liu Hanzhuang Zhang Prof. Hiroyuki Nomoto Makoto Takafuji Dr. Hirotaka Ihara Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(38):9824-9835
Glutamine derivative 1 with two‐photon absorbing units has been synthesized and was found to show gelation ability in some solvents. Its self‐assembly in the gel phase could be controlled by the solvent and speed of gelation. For example, in DMSO the organogelator self‐assembled into H‐aggregates with weak exciton coupling between the aromatic moieties. On the other hand, in DMSO/diphenyl ether (1:9, v/v) the molecules formed 1D aggregates, but with strong exciton coupling due to the small distance between the chromophores. Moreover, the formation of these two kinds of aggregates could be adjusted by the ratio of DMSO to diphenyl ether. In DMSO/toluene, DMSO/butanol, DMSO/butyl acetate, and DMSO/acetic acid systems similar results were observed. Therefore, conversion of the packing model occurs irrespective of the nature of the solvent. Notably, a unique sign inversion in the CD spectra could be realized by controlling the speed of gelation in the DMSO/diphenyl ether (1:9, v/v) system. It was found that a low speed of gelation induces the gelator to adopt a packing model with strong π–π interactions between the aromatic units. Moreover, the gels, when excited at 800 nm, emit strong green fluorescence and the quantum chemical calculations suggest that intramolecular charge transfer leads to two‐photon absorption of the gelator molecule. 相似文献
3.
Paola Fatás Jürgen Bachl Stefan Oehm Dr. Ana I. Jiménez Prof. Carlos Cativiela Prof. David Díaz Díaz 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(27):8861-8874
This work demonstrates that the incorporation of azobenzene residues into the side chain of low‐molecular‐weight peptides can modulate their self‐assembly process in organic solvents leading to the formation of stimuli responsive physical organogels. The major driving forces for the gelation process are hydrogen bonding and π–π interactions, which can be triggered either by thermal or ultrasound external stimuli, affording materials having virtually the same properties. In addition, a predictive model for gelation of polar protic solvent was developed by using Kamlet–Taft solvent parameters and experimental data. The obtained viscoelastic materials exhibited interconnected multistimuli responsive behaviors including thermal‐, photo‐, chemo‐ and mechanical responses. All of them displayed thermoreversability with gel‐to‐sol transition temperatures established between 33–80 °C and gelation times from minutes to several hours. Structure–property relationship studies of a designed peptide library have demonstrated that the presence and position of the azobenzene residue can be operated as a versatile regulator to reduce the critical gelation concentration and enhance both the thermal stability and mechanical strength of the gels, as demonstrated by comparative dynamic rheology. The presence of N‐Boc protecting group in the peptides showed also a remarkable effect on the formation and properties of the gels. Despite numerous examples of peptide‐based gelators known in the literature, this is the first time in which low‐molecular‐weight peptides bearing side chain azobenzene units are used for the synthesis of “intelligent” supramolecular organogels. Compared with other approaches, this strategy is advantageous in terms of structural flexibility since it is compatible with a free, unprotected amino terminus and allows placement of the chromophore at any position of the peptide sequence. 相似文献
4.
Self‐Assembly and Gelation of Poly(aryl ether) Dendrons Containing Hydrazide Units: Factors Controlling the Formation of Helical Structures 下载免费PDF全文
Partha Malakar Prof. Dr. Edamana Prasad 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(13):5093-5100
Self‐assembly of AB2 and AB3 type low molecular weight poly(aryl ether) dendrons that contain hydrazide units were used to investigate mechanistic aspects of helical structure formation during self‐assembly. The results suggest that there are three important aspects that control helical structure formation in such systems with acyl hydrazide/hydrazone linkage: i) J‐type aggregation, ii) the hydrogen‐bond donor/acceptor ability of the solvent, and iii) the dielectric constant of the solvent. The monomer units self‐assemble to form dimer structures through hydrogen‐bonding and further assembly of the hydrogen‐bonded dimers leads to macroscopic chirality in the present case. Dimer formation was confirmed by NMR spectroscopy and by mass spectrometry. The self‐assembly in the system was driven by hydrogen‐bonding and π–π stacking interactions. The morphology of the aggregates formed was examined by scanning electron microscopy, and the analysis suggests that aprotic solvent systems facilitate helical fibre formation, whereas introduction of protic solvents results in the formation of flat ribbons. This detailed mechanistic study suggests that the self‐assembly follows a nucleation–elongation model to form helical structures, rather than the isodesmic model. 相似文献
5.
Dr. Abraham Chemtob Dr. Lingli Ni Prof. Céline Croutxé‐Barghorn Prof. Bruno Boury 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(7):1790-1806
Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self‐assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well‐established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono‐, bis‐, or multisilylated organosilane building blocks self‐assembling into hybrid mesostructures or superstructures, subsequently cross‐linked by siloxane Si‐O‐Si condensation. The general synthesis procedure is template‐free and one‐step. However, three concurrent processes underlie the generation of self‐organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self‐assembly, and kinetically controlled sol–gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long‐range order. Since the first developments in the mid‐1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research. 相似文献
6.
Function‐Led Design of Aerogels: Self‐Assembly of Alloyed PdNi Hollow Nanospheres for Efficient Electrocatalysis 下载免费PDF全文
Bin Cai Dr. Dan Wen Dr. Wei Liu Dr. Anne‐Kristin Herrmann Albrecht Benad Prof. Alexander Eychmüller 《Angewandte Chemie (International ed. in English)》2015,54(44):13101-13105
One plausible approach to endow aerogels with specific properties while preserving their other attributes is to fine‐tune the building blocks. However, the preparation of metallic aerogels with designated properties, for example catalytically beneficial morphologies and transition‐metal doping, still remains a challenge. Here, we report on the first aerogel electrocatalyst composed entirely of alloyed PdNi hollow nanospheres (HNSs) with controllable chemical composition and shell thickness. The combination of transition‐metal doping, hollow building blocks, and the three‐dimensional network structure make the PdNi HNS aerogels promising electrocatalysts for ethanol oxidation. The mass activity of the Pd83Ni17 HNS aerogel is 5.6‐fold higher than that of the commercial Pd/C catalyst. This work expands the exploitation of the electrocatalysis properties of aerogels through the morphology and composition control of its building blocks. 相似文献
7.
Dr. Adam A. Sobczuk Dr. Youichi Tsuchiya Dr. Tomohiro Shiraki Dr. Shun‐ichi Tamaru Prof. Seiji Shinkai 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(10):2832-2838
A unique class of oligothiophene‐based organogelator bearing two crown ethers at both ends was synthesized. This compound could gelatinize several organic solvents, forming one‐dimensional fibrous aggregates. From the observation of circular dichroism, it was confirmed that the helical handedness of the fibrous assembly is controllable by the chirality of 1,2bisammonium guests, thus suggesting that one guest molecule bridges two gelator molecules through the crown–ammonium interaction. Interestingly, we have found that such chirality is created by thermal gelation, whereas it disappears by thixotropic gelation. The new finding implies that the present organogel system is applicable as a reversible switching memory device, featuring memory creation by a heat mode and memory erasing by a mechanical mode. 相似文献
8.
9.
Carmen Stoffelen Dr. Jens Voskuhl Prof. Dr. Pascal Jonkheijm Prof. Dr. Jurriaan Huskens 《Angewandte Chemie (International ed. in English)》2014,53(13):3400-3404
Supramolecular nanoparticles (SNPs) encompass multiple copies of different building blocks brought together by specific noncovalent interactions. The inherently multivalent nature of these systems allows control of their size as well as their assembly and disassembly, thus promising potential as biomedical delivery vehicles. Here, dual responsive SNPs have been based on the ternary host–guest complexation between cucurbit[8]uril (CB[8]), a methyl viologen (MV) polymer, and mono‐ and multivalent azobenzene (Azo) functionalized molecules. UV switching of the Azo groups led to fast disruption of the ternary complexes, but to a relatively slow disintegration of the SNPs. Alternating UV and Vis photoisomerization of the Azo groups led to fully reversible SNP disassembly and reassembly. SNPs were only formed with the Azo moieties in the trans and the MV units in the oxidized states, respectively, thus constituting a supramolecular AND logic gate. 相似文献
10.
11.
An “Ingredients” Approach to Functional Self‐Synthesizing Materials: A Metal‐Ion‐Selective,Multi‐Responsive,Self‐Assembled Hydrogel 下载免费PDF全文
Dr. Jianwei Li Ivica Cvrtila Mathieu Colomb‐Delsuc Dr. Edwin Otten Prof. Dr. Sijbren Otto 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(48):15709-15714
New methodology for making novel materials is highly desirable. Here, an “ingredients” approach to functional self‐assembled hydrogels was developed. By designing a building block to contain the right ingredients, a multi‐responsive, self‐assembled hydrogel was obtained through a process of template‐induced self‐synthesis in a dynamic combinatorial library. The system can be switched between gel and solution by light, redox reactions, pH, temperature, mechanical energy and sequestration or addition of MgII salt. 相似文献
12.
Jan Perlich Mine Memesa Alexander Diethert Ezzeldin Metwalli Dr. Weinan Wang Stephan V. Roth Dr. Andreas Timmann Dr. Jochen S. Gutmann Prof. Dr. Peter Müller‐Buschbaum Prof. Dr. 《Chemphyschem》2009,10(5):799-805
Looks matter: Generally, the morphology of titania thin films is crucial for their performance, hence much effort is spent to tailor the desired morphology. X‐ray scattering enables the monitoring of the crystalline titania layer morphology during build‐up of the functional multilayer stack (see Figure). Herein evidence is provided that the morphology is preserved throughout the fabrication process.
13.
14.
15.
Andrew R. Hirst Dr. Juan F. Miravet Dr. Beatriu Escuder Dr. Laurence Noirez Dr. Valeria Castelletto Ian W. Hamley Prof. Dr. David K. Smith Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(2):372-379
Two‐component systems capable of self‐assembling into soft gel‐phase materials are of considerable interest due to their tunability and versatility. This paper investigates two‐component gels based on a combination of a L ‐lysine‐based dendron and a rigid diamine spacer (1,4‐diaminobenzene or 1,4‐diaminocyclohexane). The networked gelator was investigated using thermal measurements, circular dichroism, NMR spectroscopy and small angle neutron scattering (SANS) giving insight into the macroscopic properties, nanostructure and molecular‐scale organisation. Surprisingly, all of these techniques confirmed that irrespective of the molar ratio of the components employed, the “solid‐like” gel network always consisted of a 1:1 mixture of dendron/diamine. Additionally, the gel network was able to tolerate a significant excess of diamine in the “liquid‐like” phase before being disrupted. In the light of this observation, we investigated the ability of the gel network structure to evolve from mixtures of different aromatic diamines present in excess. We found that these two‐component gels assembled in a component‐selective manner, with the dendron preferentially recognising 1,4‐diaminobenzene (>70 %), when similar competitor diamines (1,2‐ and 1,3‐diaminobenzene) are present. Furthermore, NMR relaxation measurements demonstrated that the gel based on 1,4‐diaminobenzene was better able to form a selective ternary complex with pyrene than the gel based on 1,4‐diaminocyclohexane, indicative of controlled and selective π–π interactions within a three‐component assembly. As such, the results in this paper demonstrate how component selection processes in two‐component gel systems can control hierarchical self‐assembly. 相似文献
16.
Stimuli‐Triggered Sol–Gel Transitions of Polypeptides Derived from α‐Amino Acid N‐Carboxyanhydride (NCA) Polymerizations 下载免费PDF全文
The past decade has witnessed significantly increased interest in the development of smart polypeptide‐based organo‐ and hydrogel systems with stimuli responsiveness, especially those that exhibit sol–gel phase‐transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α‐amino acid N‐carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well‐defined polypeptides and peptide hybrid polymeric materials. One‐dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross‐linking, result in the construction of three‐dimensional matrices of polypeptide gel systems. The macroscopic sol–gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli‐triggered sol–gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide‐based organo‐ and hydrogels. 相似文献
17.
18.
Yvonne L. Dorland Dr. Albertus P. H. J. Schenning Prof. Dr. Luc Brunsveld 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(49):16646-16650
Fluorescent, cell‐permeable, organic nanoparticles based on self‐assembled π‐conjugated oligomers with high absorption cross‐sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge‐mediated cellular uptake by a straightforward self‐assembly protocol, which allows for control over size and toxicity. The results show that a single amino group per ten oligomers is sufficient to achieve cellular uptake. The non‐toxic nanoparticles are suitable for both one‐ and two‐photon cellular imaging and flow cytometry, and undergo very efficient cellular uptake. 相似文献
19.
Complexation and Catenation in Aqueous Media Using a Self‐Assembled PdII Metallacyclic Receptor 下载免费PDF全文
Prof. Marcos D. García Prof. Carlos Peinador Prof. José M. Quintela 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(26):9482-9487
A M2L2 rectangular‐shaped metallacycle, obtained by metal‐directed self‐assembly of a 2‐(pyridin‐4‐ylmethyl)‐2,7‐diazapyrenium salt and [(en)Pd (NO3)2] (en=ethylenediamine), has been investigated as a molecular receptor for a wide range of aromatic substrates in water. Complexation and catenation of the receptor with selected mono‐ and polycyclic aromatic substrates produced 1:1 inclusion complexes and [2]catenanes in a highly efficient fashion, as determined by NMR and UV/Vis spectroscopic techniques, as well as single‐crystal X‐ray crystallography. Furthermore, the thermodynamic and kinetic features of the complexation processes have been analyzed for selected model guests. 相似文献
20.
Triquinacene is a concave tricyclic hydrocarbon with diverse photoreactivity. In the cavity of an electron‐accepting molecular host, triquinacene was specifically photooxidized at the peripheral allylic position into an alcohol, 1‐hydroxytriquinacene, via guest‐to‐host electron transfer. The unusual reactivity stems from the extremely electron‐deficient triazine panel ligand of the host cage, which allows the cage to function as a good electron acceptor. Thus, self‐assembled coordination cages can serve not only as molecular‐sized reaction vessels but also function electronically as redox media. Dissolved molecular oxygen is indispensable for the photoreaction and immediately traps a photogenerated radical. 相似文献