首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of methane with Ni(110) was studied with AES, LEED and ellipsometry. Sticking coefficients were determined in the temperature range 298–600 K at methane pressures of 10?4–10?2 Torr. The carbon coverages were derived from Auger spectra by calibration with ellipsometry. At room temperature no detectable adsorption was observed without use of electron sources. In the temperature range 473–579 K the coverage versus exposure curves show an induction effect at low coverage followed by an almost linear increase up to a saturation coverage of about 13 monolayer of carbon. At these temperatures a Ni(110)-(2 × 3)-C structure was observed with streaks in the direction of constant h. The observed behaviour is explained with a nucleation and growth model in which mobile carbon species are captured at the edges of surface nickel carbide islands. At temperatures above 600 K carbon diffuses into the bulk and the Ni(110)-(4 × 5)-C superstructure is observed.  相似文献   

2.
The chemisorption of nitric oxide on (110) nickel has been investigated by Auger electron spectroscopy, LEED and thermal desorption. The NO adsorbed irreversibly at 300 K and a faint (2 × 3) structure was observed. At 500 K this pattern intensified, the nitrogen Auger signal increased and the oxygen signal decreased. This is interpreted as the dissociation of NO which had been bound via nitrogen to the surface. By measuring the rate of the decomposition as a function of temperature the dissociation energy is calculated at 125 kJ mol?1. At ~860 K nitrogen desorbs. The rate of this desorption has been measured by AES and by quantitative thermal desorption. It is shown that the desorption of N2 is first order and that the binding energy is 213 kJ mol?1. The small increase in desorption temperature with increasing coverage is interpreted as due to an attractive interaction between adsorbed molecules of ~14 kJ mol?1 for a monolayer. The (2 × 3) LEED pattern which persists from 500–800 K is shown to be associated with nitrogen only. The same pattern is obtained on a carbon contaminated crystal from which oxygen has desorbed as CO and CO2. The (2 × 3) pattern has spots split along the (0.1) direction as (m, n3) and (m2, n). This is interpreted as domains of (2 × 3) structures separated by boundaries which give phase differences of 3 and π. The split spots coalesce as the nitrogen starts to desorb. A (2 × 1) pattern due to adsorbed oxygen was then observed to 1100 K when the oxygen dissolved in the crystal leaving the nickel (110) pattern.  相似文献   

3.
The adsorption of oxygen on Rh(111) at 100 K has been studied by TDS, AES, and LEED. Oxygen adsorbs in a disordered state at 100 K and orders irreversibly into an apparent (2 × 2) surface structure upon heating to T? 150 K. The kinetics of this ordering process have been measured by monitoring the intensity of the oxygen (1, 12) LEED beam as a function of time with a Faraday cup collector. The kinetic data fit a model in which the rate of ordering of oxygen atoms is proportional to the square of the concentration of disordered species due to the nature of adparticle interactions in building up an island structure. The activation energy for ordering is 13.5 ± 0.5 kcalmole. At higher temperatures, the oxygen undergoes a two-step irreversible disordering (T? 280 K) and dissolution (T?400K) process. Formation of the high temperature disordered state is impeded at high oxygen coverages. Analysis of the oxygen thermal desorption data, assuming second order desorption kinetics, yields values of 56 ± 2 kcal/ mole and 2.5 ± 10?3 cm2 s?1 for the activation energy of desorption and the pre-exponential factor of the desorption rate coefficient, respectively, in the limit of zero coverage. At non-zero coverages the desorption data are complicated by contributions from multiple states. A value for the initial sticking probability of 0.2 was determined from Auger data at 100 K applying a mobile precursor model of adsorption.  相似文献   

4.
The interactions between a molecular beam of SiO(g) and a clean and an oxidized tungsten surface were examined in the surface temperature range 600 to 1700 K by mass spectrometrically determined sticking probabilities, by flash desorption mass spectrometry (FDMS) and by Auger electron spectroscopy (AES). The sticking probability, S, of SiO has been determined as a function of coverage and of surface temperature for the clean and the oxidized tungsten surface. Over the temperature range studied and at zero coverage S = 1.0 and 0.88 for the clean and oxidized tungsten surfaces respectively. The results are consistent with both FDMS and AES. For coverage up to one monolayer there is one major adsorption state of SiO on the clean tungsten surface. FDMS shows that Tm = constant (Tm is the surface temperature at which the desorption rate is maximum) and that desorption from this state is described by a simple first order desorption process with activation energy, Ed = 85.3 kcal mole?1 and pre-exponential factor, ν = 2.1 × 1014 sec?1. AES shows that the 92 eV peak characteristic of silicon dominates. In contrast on the oxidized tungsten surface, Tm shifts to higher temperatures with increasing coverage. The data indicate a first order desorption process with a coverage dependent activation energy. At low coverage (θ ? 0.14) there is an adsorption state with Ed = 120 kcal mole?1 and ν = 7.6 × 1019, while at θ = 1.0, Ed = 141 kcal mole?1. This variation is interpreted as due to complex formation on the surface. AES shows that on oxidized tungsten, in contrast to clean tungsten, the dominant peaks occur at 64 and 78 eV, and these peaks are characteristic of higher oxidation states of silicon. Thus, it is concluded that SiO exists in different binding states on clean and oxidized tungsten surfaces.  相似文献   

5.
The co-adsorption of Cu on O2 and a W{100}surface is studied by Auger electron spectroscopy (AES), thermal desorption (TD), low energy electron diffraction (LEED) and by work function change (δø) measurements. It is shown that the presence of Cu on the surface initially decreases sO, the sticking coefficient of O2. For longer oxygen exposures and for higher adsorption temperatures, θO reaches values larger than those on the clean surface for the same O2 exposure. Except at the highest θO values and temperatures, the sticcking coefficient for copper, sCu, is unity and is independent of the oxygen coverage θO in the range studied (0 ? θO ? 2). Co-adsorption at room temperatures does not produce any long range order while co-adsorption at elevated temperature leads to the ordered structures (1 × 1), p(2 × 1), p(2 × 2) and c(2 × 2). The saturation coverage of the two dimensional co-adsorbate at 800 K is given by the relation θCu + 85 θO = 2. The work function is a complicated function of θO and θCu and is determined predominantly by the temperature at which oxygen is adsorbed. At high temperatures the sequence of adsorption has no influence, in contrast to the room temperature behavior.  相似文献   

6.
The surface ionization of alkaline-earth elements on tungsten has been studied in dependence on the temperature T and the surrounding oxygen partial pressure po2; the values of the ionization efficiency β together with those of the change of the work function ΔΦ of the surface have been applied to get information about chemical reactions of the incident alkaline-earth atoms with adsorbed oxygen and about the adsorption of alkaline-earth elements on tungsten.Whereas in the high temperature range the tungsten surface is clean, towards lower temperatures (i.e. below ≈ 2500 K at po2 = 1 × 10?6 Torr or below ≈ 2000 K at po2 = = 1 × 10?9 Torr), an adsorption of oxygen increases the work function Φ and, consequently, the ionization efficiency β of incident metal atoms. A characteristic feature of the surface ionization of the alkaline-earth elements, however, is a rapid re-decrease of β with further decreasing temperature, which occurs at T ≈ 1400 K for Mg/W, T ≈ 1600 K for Ca/W, T ≈ 1800 K for Sr/W, and at T ≈ 2000 K for Ba/W. It is shown that this behaviour of β is caused by two different reasons: Whereas in the case of Mg/W a substantial Mg adsorption leading to a reduction of the work function is responsible for the decrease of β solely, the β values of Ca and Sr are additionally influenced by chemical reactions of the incident metal atoms with adsorbed oxygen resulting in an alkaline-earth oxide desorption. In the system BaW the decrease of the ionization efficiency β can be referred to BaO formation exclusively.Assuming a thermodynamic equilibrium between the different adparticles and using experimental values of the dissociation energy of the alkaline-earth oxides (in the gas phase), the results are in good agreement with theoretical calculations.  相似文献   

7.
The quasiequilibrium treatment of heterogeneous reactions suggested by Batty and Stickney1) and first order desorption kinetics are combined to formulate a model of the equilibrium coverage of oxygen on tungsten at high temperatures (1200 ? T ? 2500°K) and low oxygen partial pressures (10?9 ? PO2 ? 10?5 Torr). The results are compared with existing data and the agreement is fairly good in view of the extreme simplicity of the theoretical model.  相似文献   

8.
Interactions between oxygen under low pressure and a niobium-oxygen solid solution had been studied, in the regime where adsorption is the rate-determining step, from 1000 to 1700 K. It is shown that at saturation of solid solution, there exists a constant limiting value Θl of superficial coverage, comparable to a limiting bulk concentration cl. The ratios θ = Θ/Θl and ? = c/cl are called “relative ratio of occupation” (superficial and bulk). KSV is the equilibrium constant of segregation between adsorbed and dissolved oxygen atoms: (Odiss?v) + σ ? (Ochim?σ) + v (σ and v being respectively surface and bulk sites), KSV = [(1 ? θ)/θ] [?/(1 ? ?)]. The experimentally determined expression: KSV = 5.7 exp[?(22.1 ? 12.1 θ)/ RT] shows that lateral superficial interactions have a large influence on the enthalpy of transfer between the bulk and the surface of the sample. Adsorption is direct and non activated. At the solubility limit, only a fraction of the superficial sites is occupied. We estimate it to be one half. The sticking probability b of oxygen on a niobium oxygen solid solution is given by b = (1 ? θ/2)2, its value at zero coverage being estimated as unity.  相似文献   

9.
Oxygen adsorbed on Pt(111) has been studied by means of temperature programmed thermal desorption spectroscopy (TPDS). high resolution electron energy loss spectroscopy (EELS) and LEED. At about 100 K oxygen is found to be adsorbed in a molecular form with the axis of the molecule parallel to the surface as a peroxo-like species, that is, the OO bond order is about 1. At saturation coverage (θmol= 0.44) a (32×32)R15° diffraction pattern is observed. The sticking probability S at 100 K as a function of coverage passes through a maximum at θ = 0.11 with S = 0.68. The shape of the coverage dependence is characteristic for adsorption in islands. Two coexisting types of adsorbed oxygen molecules with different OO stretching vibrations are distinguished. At higher coverages units with v-OO = 875 cm?1 are dominant. With decreasing oxygen coverages the concentration of a type with v-OO = 700 cm?1 is increased. The dissociation energy of the OO bond in the speices with v-OO = 875 cm?1 is estimated from the frequency shift of the first overtone to be ~ 0.5 eV. When the sample is annealed oxygen partially desorbs at ~ 160K, partially dissociates and orders into a p(2×2) overlayer. Below saturation coverage of molecular oxygen, dissociation takes place already at92 K. Atomically adsorbed oxygen occupies threefold hollow sites, with a fundamental stretching frequency of 480 cm?1. In the non-fundamental spectrum of atomic oxygen the overtone of the E-type vibration is observed, which is “dipole forbidden” as a fundamental in EELS.  相似文献   

10.
A preliminary study of the CO/CO2 carburization of (111) Ni at 217°C and 1 × 10?6 Torr total pressure by Auger electron spectroscopy was undertaken. It was found that electron beam (~20 μA, ~2500 μA/cm2, 3 kV) induced effects were significant for CO and CO2 adsorbed on the nickel surface; these effects could be factored out by using delayed beam techniques. The electron-induced reactions were similar in both cases and plots of normalized carbon peak height versus time could be characterized by the equation C = A(1-e?tτ) were τCO = 32.0 min , ACO = 206.2, τCO2 = 39.8 min, ACO2 = 176.2. Observed oxygen peaks were smaller than expected. The evidence of several researchers suggests electron beam induced dissociation of CO and CO2 followed by electron beam induced desorption of the resulting oxygen. Reactant gas interaction with the electron gun cathode was significant with resulting beam movements causing scatter in AES peak height measurements.  相似文献   

11.
The formation of ordered phases of sulfur on the molybdenum (100) crystal face has been studied by Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES) and Thermal Desorption Spectroscopies (TDS). Sulfur was deposited from a S2 molecular flux streaming out of an Ag2S containing electrochemical cell inside the UHV chamber. The use of a controlled flux of S2 allowed the careful determination of saturation values for the monolayer, as well as the formation of multilayers of sulfur. This allowed the calibration of Auger intensities in terms of sulfur coverage. Various ordered structures, c(2 × 2), (1 × 2), 21?11 and c(2 × 4), were observed by LEED for different values of the S coverage. Real space models for these structures are proposed that satisfy the coverage values observed and place sulfur atoms only on high symmetry four-fold sites on the (100) molybdenum surface.  相似文献   

12.
Neon monolayers on graphite have been investigated by high resolution LEED in the range 14.5 < T < 7.5 K and 10?8 < p < 10?4 Torr. The fluid-solid transition line has the form ln(pTorr)= ?AT + B, with A = 740 ± 45 K and B = 31.0 ± 2.8. The solid is an incommensurate rotated phase whose lattice parameter decreases and rotation angle increases away from the transition line. Comparison is made with other thermodynamic and diffraction studies, and a preliminary phase diagram is constructed. Extrapolation of these data to higher temperatures and pressure suggests that this rotated solid monolayer is stable up to 23–25 K (P = 3?10 Torr) at coverage x = 1, and is stable over the range 0.88 < x < 1.0 at T = 16 K (2 × 10?7 < p 1.5 × 10?2 Torr). Extrapolation to lower temperatures gives the 2D triple point pressure in the range p = (0.3?3) × 10?10 Torr. The steep slope of the fluid-solid transition line is consistent with the fluid phase having a high density (x?0.80) in the temperature range studied.  相似文献   

13.
Adlayers of oxygen, carbon, and sulfur on W(211) have been characterized by LEED, AES, TPD, and CO adsorption. Oxygen initially adsorbs on the W(211) surface forming p(2 × 1)O and p(1 × 1)O structures. Atomic oxygen is the only desorption product from these surfaces. This initial adsorption selectively inhibits CO dissociation in the CO(β1) state. Increased oxidation leads to a p(1 × 1)O structure which totally inhibits CO dissociation. Volatile metal oxides desorb from the p(1 × 1)O surface at 1850 K. Oxidation of W(211) at 1200 K leads to reconstruction of the surface and formation of p(1 × n)O LEED patterns, 3 ? n ? 7. The reconstructed surface also inhibits CO dissociation and volatile metal oxides are observed to desorb at 1700 K, as well as at 1850 K. Carburization of the W(211) surface below 1000 K produced no ordered structures. Above 1000 K carburization produces a c(6 × 4)C which is suggested to result from a hexagonal tungsten carbide overlayer. CO dissociation is inhibited on the W(211)?c(6×4)C surface. Sulfur initially orders into a c(2 × 2)S structure on W(211). Increased coverage leads to a c(2×6)S structure and then a complex structure. Adsorbed sulfur reduces CO dissociation on W(211), but even at the highest sulfur coverages CO dissociation was observed. Sulfur was found to desorb as atomic S at 1850 K for sulfur coverages less than 76 monolayers. At higher sulfur coverages the dimer, S2, was observed to desorb at 1700 K in addition to atomic sulfur desorption.  相似文献   

14.
Y.C. Cheng 《Surface science》1973,40(2):433-438
The adsorption of oxygen on clean cleaved (111) silicon surfaces has been investigated by high resolution electron spectroscopy (HRES), Auger electron spectroscopy (AES) and ellipsometry. Localized vibrations (h?ω = 94, 130 and 175 meV) which are related to the binding state band of oxygen are identified with HRES. AES measures the concentration of adsorbed atoms basically independent of their binding state while ellipsometry refers additionally to the optical properties of the adsorbed layer. The same adsorption kinetics was found with the three methods. Oxygen therefore adsorbs in a single likely molecular state. The sticking coefficient S increases exponentially with the surface step concentration. S is also enhanced by the presence of nude ion gauges. Depending on these parameters sticking coefficients between 2 × 10?4 and 10?1 have been obtained. This result might contribute to an explanation of the large differences in earlier works.  相似文献   

15.
The thermodynamic properties of the adsorption of xenon on the stepped Pd(s)[8(100)×(110)] surface have been studied over a wide range of pressure (5×10?11 to 1×10?4 Torr) and temperature (40–140 K). We have measured adsorption isobars using AES in order to evaluate the surface coverage. By choosing pressure and temperature we have studied under equilibrium conditions, the successive adsorption of xenon on the steps and on the terraces until the first layer is formed, the condensation of the second layer as well as the formation of xenon multilayers. For a small range of pressure and temperature, adsorption takes place only on the atomic steps. The LEED pattern shows that only every other site along the steps is occupied. The extrapolated initial heat of adsorption for steps is EadS = 10.2 kcal/mol, decreasing monotonically by about 2 kcal/mol as the relative coverage of the step sites increases. The dipole moment of the Xe atoms adsorbed on steps is 1.12 D. During adsorption on the terraces the LEED observations suggest that the xenon adlayer is non-localized up to completion of the hexagonally close packed monolayer. The initial heat of adsorption on the terraces, EadT is 8.2 kcal/mol and decreases continuously to a value of 6.9 kcal/mol for a complete monolayer due to lateral repulsive interactions between the adsorbed xenon atoms. The induced dipole moment of Xe on terraces is reduced to 0.49 D. The 5p12 binding energy of Xe adsorbed on terrace sites is 0.3 eV smaller than that of Xe occuping step sites. The differential molar entropy of the adsorbed layer on the terraces as a function of coverage compares fairly well with the calculated value for an ideally mobile two-dimensional gas. No indication of the growth of two-dimensional xenon islands has been found under these conditions. The isosteric heat of adsorption for the second layer is Eadsec = 5.8 kcal/mol independently of the coverage. The condensation of the second layer is a first order two-dimensional gas ? two-dimensional solid phase transition in opposition to the continuous nature of the adsorption of the first layer (extending over a wide range of temperature for a given pressure). The induced dipole moment is further reduced for the Xe second layer to a value of 0.11 D. Finally, the condensation of multilayers proceeds with a latent heat of transformation of Econd = 3.8 kcal/mol in excellent agreement with the known bulk value for the heat of sublimation of xenon. The line shape of the NVV low energy Auger transitions of xenon or the UPS binding energies of the Xe 5p32,12 spectra allow a clear distinction between first, second and higher layer Xe atoms. We have also established the temperature/pressure conditions for equilibrium between first, second and bulk xenon layers, i.e. a so-called “roughening point”.  相似文献   

16.
Using probe-hole field emission microscopy the effect of adsorbed lead on the work function of the 100 and 110 planes of tungsten hasbeen studied and compared with the findings of Bauer et al. who studied the same system using LEED/Auger techniques. The effect of lead on the average work function \?gf and that of (211) is also reported. Sub-monolayer lead increases φ(211) and this is ascribed to formation of a lead-tungsten dipole, the lead being negatively charged, with dipole moment 0.035 × 10?30 C-m and polarizability 2.0 Å3. On (110) lead reduces φ and behaves as a dipole with positively charged lead of moment 0.15 × 10?30 C-m and polarizability 2.5 Å3. φ(100) is also observed to decrease at low coverages equilibrated at low temperatures. This contrasts with Bauer's findings but is considered to result from failure of the Fowler—Nordheim model. With increasing lead coverage on all planes φ(hkl) tends to a constant value φsat. By comparison with Bauer et al. we can identify φsat on (110) as a compressed monolayer of lead. Likewise φsat produced by low temperature (~450 K) spreading on (100) is also associated with a compressed (1 × 1) structure. The lower value of φ(100) produced at higher temperatures (~850 K) is identified with the microfacetted surface observed by Bauer et al. Lead is observed to be absent from (110) when mean adatom densities as high as 8 × 1014 atoms cm?2 are thermally equilibrated, and this is shown to result from the relatively low binding energy of lead on (110). The general agreement between the present findings and those of Bauer lends confidence to the belief that both techniques can detect the same behaviour despite the very large (1010) difference in the size of the area examined.  相似文献   

17.
Previous values of the pressure dependence of the magnetocrystalline anisotropy constant K1 of iron and nickel were revised. These values of K1?1 (dK1dp) depend on the magnetic field for iron, and do not for nickel. The value in iron extrapolated to infinitely strong magnetic field is ?7.8×10?6 bar?1 at room temperature and ?7.3×10?6 bar?1 at 77K, and in nickel at 15 KOe is ?7.5×10?6 bar?1 at room temperature and ?2.8×10?6 bar?1 at 77K.  相似文献   

18.
The reaction of carbon monoxide with oxygen chemisorbcd on polycrystalline platinum has been studied using Auger spectroscopy. Two types of chemisorbed oxygen are distinguished on the basis of Auger electron chemical shifts and reactivity towards carbon monoxide. When the substrate is below 800 K, a single very reactive type of chemisorbed oxygen is formed. Above 800 K a new species begins to form which is characterized by an Auger chemical shift of about 6 eV and by low reactivity. The decay of the oxygen Auger signal using several fixed pressures of carbon monoxide was measured. The reaction is first order in carbon monoxide pressure but no clear decision can be made about the order with respect to oxygen coverage. With the reaction CO + 1202 → CO2 operating at steady-state, the oxygen coverage was measured as a function of CO pressure. In the region 363–600 K, the steady state oxygen coverage began to decline measurably when pCOpO2 reached 0.1. When pCO>pO2the oxygen coverage became immeasurably small. A simple model is used to relate these phenomena to observed carbon dioxide production rates.  相似文献   

19.
The interaction of oxygen with a Pt(110) crystal surface has been investigated by thermal desorption mass spectroscopy, LEED and AES. Adsorption at room temperature produces a β-state which desorbs at ~800 K. Complete isotopic mixing occurs in desorption from this state and it populates with a sticking probability which varies as (1 ? θ)2, both observations consistent with dissociative adsorption. The desorption is second order at low coverage but becomes first order at high coverage. The saturationcoverage is 3.5 × 1014 mol cm?2. The spectra have been computer analysed to determine the fraction desorbing by first (β1) and second (β2) order kinetics as a function of total fractional coverage θ using this fraction as the only adjustable parameter. The β1 desorption commences at θ ~ 0.25 and β1 and β2 contribute equally to the desorption at saturation. The kinetic parameters for β1 desorption were calculated from the variation of peak temperature with heating rate as ν1 = 1.7 × 109 s?1 and E1 = 32 kcal mole?1 whereas two different methods of analysis gave consistent parameters ν2 = 6.5 × 10?7 cm2 mol?1 s?1 and E2 = 29 and 30 kcal mole?1 for β2 desorption. The kinetics of desorptior are discussed in terms of the statistics for occupation of near neighbour sites. While many fea tures of the results are consistent with this picture, it is concluded that simple models considering either completely mobile or immobile adlayers with either strong or zero adatom repulsion are not completely satisfactory. The thermal desorption surface coverage has been correlated with the AES measurements and it has been possible to use the AES data for PtO as an internal standard for calibration of the AES oxygen coverage determination. At low temperature (170 K) oxygen populates an additional molecular α-state. Adsorption into the α- and β-states is competitive for the same sites and pre-saturation of the β-state at 300 K excludes the α-state. This, together with the AES observation that the adsorption is enhanced and faster at 450 than 325 K suggests a low activation energy for adsorption into the β-state.  相似文献   

20.
The adsorption of acetylene on W(100) at room temperature has been studied by AES, ELS, thermal desorption, mass spectrometry, work function and LEED in one vacuum chamber. AES line profile analysis shows that there are at least two adsorption processes occurring at room temperature. Further, it is possible to explain all the AES results by assuming non-sequential adsorption into just two states, denoted by α and β. This picture was substantiated and embellished by comparison with other standard surface techniques. The α-state comprises either a C2H2 unit with an activation energy for desorption of 2.3 eVmolecule (53 kcal mole?1) or CH units bounded through the carbon of the β-state. Saturation coverage for the α-state is 3 × 1014 molecules cm?2. The β-state is dissociative at low acetylene exposures and comparison between a carbon covered surface and the β-state suggest the latter to be dissociative up to saturation. There also appears to be ca. 1014 hydrogen atoms cm?2 on W(100) on room temperature acetylene saturation, the carbon content of the β-state being 9 × 1014 atoms cm?2. The residual C?C bond from the molecule in the β-state remains unknown. No sign of ordering in the adsorbed species was detected, save the possibility of (1 × 1) in the β-state. Acetylene adsorption at 580 K showed hydrogen from the β-state to block acetylene adsorption by 15% at saturation. A two-site adsorption model for the β-state is proposed to explain the results. The α-state is bonded through the carbon of the β-state and it is speculated that the former adsorbs onto “β” domains where there is a critical minimum size for the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号