首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
AtUGT89C1, a glycosyltransferase from Arabidopsis thaliana, has shown interesting characteristics such as accepting diverse NDP-D/L-sugars as glycosyl donors. Genistein was used as a substrate to probe in vitro reactions in which different NDP-sugars were used as sugar donors. Among nine different NDP-D/L-sugars tested, AtUGT89C1 accepted five of them, including UDP-α-D-glu-cose, UDP-α-D-galactose, dTDP-β-L-rhamnose, GDP-β-L-fucose, and dTDP-α-2-deoxy-D-glucose and conjugated sugar moieties from the respective donors with the 7-hydroxyl position of genistein. Results showed the promiscuous nature of AtUGT89C1 toward donor and acceptor substrates, thus expanding the biotechnological application of this enzyme in the production of natural and unnatural flavonoid glycosides.  相似文献   

2.
While strategies involving a 2e transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or SN side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2-cis-thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp2 and sp3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.

Organophotoredox mediated HAT catalysis is developed for achieving high anomerically selective thioglycosylation of glycosyl bromides.  相似文献   

3.
New aglycon switch approach using glycosyltransferase VinC was explored to create unnatural glycosides from natural glycoside in one-pot reaction. This aglycon switch comprises from two reactions, where NDP-vicenisamine generated in situ from natural glycoside vicenistatin and NDP by the reverse reaction is transferred to the targeted additional aglycons to form unnatural vicenisaminides by the forward reaction.  相似文献   

4.
The retaining glycosyltransferase GalNAc‐T2 is a member of a large family of human polypeptide GalNAc‐transferases that is responsible for the post‐translational modification of many cell‐surface proteins. By the use of combined structural and computational approaches, we provide the first set of structural snapshots of the enzyme during the catalytic cycle and combine these with quantum‐mechanics/molecular‐mechanics (QM/MM) metadynamics to unravel the catalytic mechanism of this retaining enzyme at the atomic‐electronic level of detail. Our study provides a detailed structural rationale for an ordered bi–bi kinetic mechanism and reveals critical aspects of substrate recognition, which dictate the specificity for acceptor Thr versus Ser residues and enforce a front‐face SNi‐type reaction in which the substrate N‐acetyl sugar substituent coordinates efficient glycosyl transfer.  相似文献   

5.
Thioglycosides are used frequently as glycosyl donors and as mimetics of O-glycosides. While being very useful, thioglycosides are prone to a detrimental side reaction referred to as aglycon transfer. In this letter, it is shown that aglycon transfer can be blocked by matching thioglycoside-containing acceptors with more armed glycosyl donors.  相似文献   

6.
The stereoselective synthesis of saccharide thioglycosides containing 1,2-cis-2-amino glycosidic linkages is challenging. In addition to the difficulties associated with achieving high α-selectivity in the formation of 1,2-cis-2-amino glycosidic bonds, the glycosylation reaction is hampered by undesired transfer of the anomeric sulfide group from the glycosyl acceptor to the glycosyl donor. Overcoming these obstacles will pave the way for the preparation of oligosaccharides and glycoconjugates bearing the 1,2-cis-2-amino glycosidic linkages because the saccharide thioglycosides obtained can serve as donors for another coupling iteration. This approach streamlines selective deprotection and anomeric derivatization steps prior to the subsequent coupling event. We have developed an efficient approach for the synthesis of highly yielding and α-selective saccharide thioglycosides containing 1,2-cis-2-amino glycosidic bonds, via cationic nickel-catalyzed glycosylation of thioglycoside acceptors bearing the 2-trifluoromethylphenyl aglycon with N-phenyl trifluoroacetimidate donors. The 2-trifluoromethylphenyl group effectively blocks transfer of the anomeric sulfide group from the glycosyl acceptor to the C(2)-benzylidene donor and can be easily installed and activated. The current method also highlights the efficacy of the nickel catalyst selectively activating the C(2)-benzylidene imidate group in the presence of the anomeric sulfide group on the glycosyl acceptors.  相似文献   

7.
The drive to understand the molecular determinants of carbohydrate binding as well as the search for more chemically and biochemically stable sugar derivatives and carbohydrate-based therapeutics has led to the synthesis of a variety of analogues that replace the glycosidic oxygen with sulfur or carbon. In contrast, the effect of substitution of the ring oxygen on the conformations and enzymatic tolerance of sugars has been largely neglected, in part because of the difficulty in obtaining these analogues. Herein we report the first synthesis of the carbocyclic version of the most common naturally occurring sugar-1-phosphate, glucose-1-phosphate, and its evaluation with bacterial and eukaryotic sugar nucleotidyltransferases. In contrast to results with the eukaryotic enzyme, the carbaglucose-1-phosphate serves as a substrate for the bacterial enzyme to provide the carbocyclic uridinediphosphoglucose. This result demonstrates the first chemoenzymatic strategy to this class of glycosyltransferase inhibitors and stable activated sugar mimics for cocrystallization with glycosyltransferases and their glycosyl acceptors. This difference in turnover between enzymes also suggests the possibility of using sugar nucleotidyltransferases in vivo to convert prodrug forms of glycosyltransferase inhibitors. In addition, we report several microwave-assisted reactions, including a five minute Ferrier rearrangement with palladium, that accelerate the synthesis of carbocyclic sugars for further studies.  相似文献   

8.
In this Concept article, recent advances are highlighted in the synthesis and applications of anomeric nucleophiles, a class of carbohydrates in which the C1 carbon bears a carbon–metal bond. First, the advantages of exploiting the carboanionic reactivity of carbohydrates and the methods for the synthesis of mono- and oligosaccharide stannanes are discussed. Second, recent developments in the glycosyl cross-coupling method resulting in the transfer of anomeric configuration from C1 stannanes to C-aryl glycosides are reviewed. These highly stereoretentive processes are ideally suited for the preparation of carbohydrate-based therapeutics and were demonstrated in the synthesis of antidiabetic drugs. Next, the application of the glycosyl cross-coupling method to the preparation of Se-glycosides and to glycodiversification of small molecules and peptides are highlighted. These reactions proceed with exclusive anomeric control for a broad range of substrates and tolerate carbohydrates with free hydroxyl groups. Taken together, anomeric nucleophiles have emerged as powerful tools for the synthesis of oligosaccharides and glycoconjugates and their future applications will open new possibilities to incorporate saccharides into small molecules and biologics.  相似文献   

9.
A highly stereoselective palladium-catalyzed O-glycosylation reaction is described. The reaction of a glycal 3-acetate or carbonate with the zinc(II) alkoxide of acceptors establishes the glycosidic linkage under palladium catalysis to give rise to disaccharides as the product in good yields and with high stereoselectivity. In contrast to the Lewis acid mediated Ferrier procedure, the anomeric stereochemistry of this reaction is controlled by the employed ligand. Whereas the use of a complex of palladium acetate and 2-di(tert-butyl)phosphinobiphenyl as the catalyst results in the exclusive beta-glycoside formation, the same reaction using trimethyl phosphite ligand furnishes an alpha-anomer as the major product. The utility of the 2,3-unsaturation present in the resulting glycoside is demonstrated by the further transformations such as dihydroxylation, hydration, and hydrogenation reactions. Thus, the combination of the glycosylation and subsequent functionalization provides a novel entry to saccharides which are otherwise difficult to prepare. The broad scope of the process, mildness of the reaction conditions, and experimental simplicity should make this method a useful tool in synthetic carbohydrate chemistry.  相似文献   

10.
Oligosaccharides embodying the S-maltosyl-6-thiomaltosyl structure have been readily synthesised by using convergent chemoenzymatic approaches. The key steps for the preparation of these molecules involved: 1) transglycosylation reactions of maltosyl fluorides onto suitable acceptors catalysed by the bacterial transglycosylase, cyclodextrin glycosyltransferase (CGTase), and 2) the SN2-type displacement of a 6-halide from acetylated acceptors by activated 1-thioglycoses. The target molecules, which were obtained in good overall yields, proved to be useful for investigating substrate binding in the active sites of several enzymes that act upon the alpha-1,6-linkage of pullulan and/or amylopectin. The compounds exhibit Ki values in the 2.5-1350 microM range with the different enzymes, and the highest affinity found by using these molecules was seen for the pullulanase from Bacillus acidopullulyticus. Both barley-malt limit dextrinase and pullulanase type II from Thermococcus hydrothermalis only recognised the longest linear thiooligosaccharide, while a branched heptasaccharide was the strongest inhibitor of pullulanase from Klebsiella planticola.  相似文献   

11.
A self-promoted glycosylation method for the stereoselective formation of β-glucosides from a substrate library of glycosyl trichloroacetimidate glycosyl donors and glycosyl acceptors is presented. The simple two-component reaction takes place at elevated temperatures, without the addition of any additives or catalysts. After a simple basic workup, N-glycosides were obtained in good yields and with high β-selectivity and hence this method allows for easy access to glycoconjugates under very mild conditions. The influences of neighboring group participation and substituents, in both the glycosyl donor and acceptor, were studied. Kinetic data were obtained from in situ IR and these were used for a Hammett study. A connection between the pKa of the acceptor and reaction rate was found and new mechanistic insight in self-promoted glycosylations gained.  相似文献   

12.
Glycosyltransferases (GTs) are a key family of enzymes that catalyze the synthesis of glycosidic bonds in all living organisms. The reaction involves the transfer of a glycosyl moiety and can proceed with retention or inversion of the anomeric configuration. To date, the catalytic mechanism of retaining GTs is a topic of great controversy, particularly for those enzymes containing a putative nucleophilic residue in the active site, for which the occurrence of a double‐displacement mechanism has been suggested. We report native ternary complexes of the retaining glycosyltransferase α‐1,3‐galactosyltransferase (α3GalT) from Bos taurus , which contains such a nucleophile in the active site, in a productive mode for catalysis in the presence of its sugar donor UDP‐Gal, the acceptor substrate lactose, and the divalent cation cofactor. This new experimental evidence supports the occurrence of a front‐side substrate‐assisted SNi‐type reaction for α3GalT, and suggests a conserved common catalytic mechanism among retaining GTs.  相似文献   

13.
Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well.  相似文献   

14.
The reactivity of both coupling partners—the glycosyl donor and acceptor—is decisive for the outcome of a glycosylation reaction, in terms of both yield and stereoselectivity. Where the reactivity of glycosyl donors is well understood and can be controlled through manipulation of the functional/protecting‐group pattern, the reactivity of glycosyl acceptor alcohols is poorly understood. We here present an operationally simple system to gauge glycosyl acceptor reactivity, which employs two conformationally locked donors with stereoselectivity that critically depends on the reactivity of the nucleophile. A wide array of acceptors was screened and their structure–reactivity/stereoselectivity relationships established. By systematically varying the protecting groups, the reactivity of glycosyl acceptors can be adjusted to attain stereoselective cis‐glucosylations.  相似文献   

15.
Lee YJ  Lee K  Jung EH  Jeon HB  Kim KS 《Organic letters》2005,7(15):3263-3266
[reaction: see text]. A reliable and generally applicable direct method for the stereoselective beta-arabinofuranosylation employing a 2'-carboxybenzyl arabinofuranoside as the glycosyl donor has been established. The acyl-protective group on glycosyl acceptors is essential for the beta-stereoselectivity. The power of the present acceptor-dependent glycosylation method was demonstrated by the efficient synthesis of the octaarabinofuranoside in arabinogalactan and lipoarabinomannan found in mycobacterial cell wall.  相似文献   

16.
Traditional glycosyltransferase (GT) activity assays are not easily configured for rapid detection nor for high throughput screening because they rely on radioactive product isolation, the use of heterogeneous immunoassays or mass spectrometry. In a typical glycosyltransferase biochemical reaction, two products are generated, a glycosylated product and a nucleotide released from the sugar donor substrate. Therefore, an assay that detects the nucleotide could be universal to monitor the activity of diverse glycosyltransferases in vitro. Here we describe three homogeneous and bioluminescent glycosyltransferase activity assays based on UDP, GDP, CMP, and UMP detection. Each of these assays are performed in a one-step detection that relies on converting the nucleotide product to ATP, then to bioluminescence using firefly luciferase. These assays are highly sensitive, robust and resistant to chemical interference. Various applications of these assays are presented, including studies on the specificity of sugar transfer by diverse GTs and the characterization of acceptor substrate-dependent and independent nucleotide-sugar hydrolysis. Furthermore, their utility in screening for specific GT inhibitors and the study of their mode of action are described. We believe that the broad utility of these nucleotide assays will enable the investigation of a large number of GTs and may have a significant impact on diverse areas of Glycobiology research.  相似文献   

17.
Stereocontrolled chemical glycosylation remains a major challenge despite vast efforts reported over many decades and so far still mainly relies on trial and error. Now it is shown that the relative reactivity value (RRV) of thioglycosides is an indicator for revealing stereoselectivities according to four types of acceptors. Mechanistic studies show that the reaction is dominated by two distinct intermediates: glycosyl triflates and glycosyl halides from N‐halosuccinimide (NXS)/TfOH. The formation of glycosyl halide is highly correlated with the production of α‐glycoside. These findings enable glycosylation reactions to be foreseen by using RRVs as an α/β‐selectivity indicator and guidelines and rules to be developed for stereocontrolled glycosylation.  相似文献   

18.
Abstract

Glycosyl-N-allyl carbamates, obtained by reaction of anomerically unprotected saccharides with allyl isocyanate, can be activated by an electrophile-induced cyclisation and reacted with glycosyl acceptors to form the corresponding oligosaccharides By this method the mucin core 2 trisaccharide2 has successfully been synthesized. Due to the mild glycosylation conditions even 1-O-acetyl protected glycosyl acceptors can be used. This was demonstrated in the synthesis of a 1,6-linked glucosyl trisaccharide whereby a reptitious glycosylation strategy could be applied.

  相似文献   

19.
Two‐component Giese type radical additions are highly practical and established reactions. Herein, three‐component radical conjugate additions of unactivated alkenes to Michael acceptors are reported. Amidyl radicals, oxidatively generated from α‐amido oxy acids using redox catalysis, act as the third reaction component which add to the unactivated alkenes. The adduct radicals engage in Giese type additions to Michael acceptors to provide, after reduction, the three‐component products in an overall alkene carboamination reaction. Transformations which can be conducted under practical mild conditions feature high functional group tolerance and broad substrate scope.  相似文献   

20.
《Tetrahedron: Asymmetry》2005,16(2):321-335
The treatment of various glycosyl acceptors, each containing a reactive thiol group, with the appropriate glycosyl donor and a glycoside hydrolase or glycosynthase, failed to yield any thioglycosides––only the products of O-glycosylation were formed. However, thioglycosides were formed when a thioglycoligase was used to mediate the reaction between acceptor and donor. In fact, pyranose acceptors possessing a thiol group at C3, C4 or C6 (but not C2) were all capable of conversion into thioglycosides. Some comment is given regarding the mechanism of the various processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号