首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel and unique approach was used for retention modelling in the separation of simvastatin and six impurities by liquid chromatographic using a microemulsion as mobile phase. A microemulsion is a modification of a micellar system where a lipophilic organic solvent is dissolved in the micelles; for that reason, microemulsions are usually treated as solvent-modified micellar solutions. When microemulsions are used as eluents in HPLC separations, solutes partition between the charged oil droplets and the aqueous buffer phase. The complexity of the composition of the microemulsion permits extensive manipulations to be made during method development in order to achieve acceptable resolution of such a complex mixture of substances. In order to avoid a laborious "trial and error" procedure, a 2(3) full factorial design was applied for choosing an optimal microemulsion composition to obtain good separation in a reasonable run time. Organic solvent, sodium dodecyl sulphate, and n-butanol content were varied within defined experimental domain. Optimal conditions for the separation of simvastatin and its six impurities were obtained using an X Terra 50 x 4.6 mm, 3.5 microm particle size column at 30 degrees C. The mobile phase consisted of 0.9% w/w of diisopropyl ether, 2.2% w/w of sodium dodecylsulphate (SDS), 7.0% w/w of co-surfactant such as n-butanol, and 89.9% w/w of aqueous 25 mM disodium phosphate pH 7.0.  相似文献   

2.
Kahle KA  Foley JP 《Electrophoresis》2007,28(11):1723-1734
The first simultaneous use of a chiral surfactant and a chiral oil for microemulsion EKC (MEEKC) is reported. Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and dibutyl tartrate (D, L, or racemic, 1.23% v/v) were examined as chiral pseudostationary phases (PSPs) for the separation of six pairs of pharmaceutical enantiomers: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Subtle differences were observed for three chromatographic figures of merit (alpha(enant), alpha(meth), k) among the chiral microemulsions; a moderate difference was observed for efficiency (N) and elution range. Dual-chirality microemulsions provided both the largest and smallest enantioselectivities, due to small positive and negative synergies between the chiral microemulsion components. For the ephedrine family of compounds, dual-chiral microemulsions with surfactant and oil in opposite stereochemical configurations provided higher enantioselectivities than the single-chiral component microemulsion (RXX), whereas dual-chiral microemulsions with surfactant and oil in the same stereochemical configurations provided lower enantioselectivities than RXX. Slight to moderate enantioselective synergies were confirmed using a thermodynamic model. Efficiencies observed with microemulsions comprised of racemic dibutyl tartrate or dibutyl-D-tartrate were significantly higher than those obtained with dibutyl-L-tartrate, with an average difference in plate count of about 25 000. Finally, one two-chiral-component microemulsion (RXS) provided significantly better resolution than the remaining one- and two-chiral-component microemulsions for the ephedrine-based compounds, but only slightly better or equivalent resolution for non-ephedrine compounds.  相似文献   

3.
The solubilization and phase equilibria of w/o microemulsions have been shown to be dependent on two phenomenological parameters, namely the spontaneous curvature and elasticity of the interfacial film, when interfacial tension is very low. The spontaneous curvature of an interface is basically determined by the geometric packing of surfactant and cosurfactant molecules at the interface, whereas the interfacial elasticity is related to the energy required to bend the interface. The droplet size and solubilization of microemulsions is mainly determined by the radius of spontaneous curvature, and is further influenced by interfacial elasticity and interdroplet interactions. A w/o microemulsion with a highly curved and relatively rigid interfacial film can exist in equilibrium with excess water at the solubilization limit due to the interfacial bending stress. Increasing the natural radius and fluidity of the interface can increase the droplet size and hence the solubilization in the microemulsion. On the other hand, a w/o microemulsion with a highly fluid interfacial film can exist in equilibrium with an excess oil phase containing a low density of microemulsion droplets due to attractive interdroplet interaction. Increasing the interfacial rigidity and decreasing the natural radius in this case can increase water solubilization in the microemulsion by retarding the phase separation process. Thus, a maximum water solubilization in a w/o microemulsion can be obtained by minimizing both the interfacial bending stress of rigid interfaces and the attractive interdroplet interaction of fluid interfaces at an optimal interfacial curvature and elasticity. The study of phase equilibria of microemulsions can serve as a simple method to evaluate the property of the interface and provide phenomenological guidance for the formulation of microemulsions with maximum solubilization capacity.  相似文献   

4.
Bicontinuous microemulsions (BCMEs) have excellent solubulizing properties along with low interfacial tension and aqueous content that can be controlled. In this work, water soluble plant protease inhibitor (PI), well characterized for its activity against insect pests, was incorporated into a BCME system and explored for permeation on hydrophobic leaf surfaces and protease inhibition activity. The bicontinuous nature of the microemulsion containing water:2-propanol:1-butanol (55:35:10 w/w) was characterized using conductivity and self-diffusion coefficient measurements. The PI was soluble in the water-rich bicontinuous domains, stable in the microemulsions, and protease inhibition activity was retained for a prolonged duration. The microemulsions ensured greater wettability and a wider spread of the PI on hydrophobic leaf surfaces as revealed by contact angle measurements. Significantly, trypsin inhibition activity assays of the PI recovered from the leaves after delivery from the microemulsion indicated a significant increase in the PI retention on the leaf. This BCME enabled greater leaf permeation and retention of the PI can be attributed to a temporary disruption of the waxy leaf surface followed by self-repair without causing any long term damage to the plant.  相似文献   

5.
Kahle KA  Foley JP 《Electrophoresis》2007,28(15):2644-2657
In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.  相似文献   

6.
Malenovi&#;  A.  Medenica  M.  Ivanovi&#;  D.  Jan&#;i&#;  B. 《Chromatographia》2006,63(13):S95-S100

The use of microemulsions as eluents in HPLC has shown excellent potential.We have developed a novel approach for the analysis of Simvastatin and its six impurities, applying microemulsions as mobile phase. The method was validated and applied to the analysis of commercially available tablets in order to confirm that the proposed approach is useful for the application of this technique to drug analysis. A microemulsion eluent containing 0.9% w/w of diisopropylether, 1.7% w/w of sodium dodecyl-sulphate (SDS), 7.0% w/w of co-surfactant such as n-butanol and 90.4% w/w of aqueous 25 mM di-sodium phosphate pH 7.0 was used for the analysis. Separations were performed on a 3.5 µm X TerraTM 50 × 4.6 mm column at 30 °C. Detection was performed at 238 nm with an eluent flow rate of 0.3 mL min−1. The optimized and validated method can be used for the identification and simultaneous determination of Simvastatin and its six impurities in bulk drug and in pharmaceutical dosage forms.

  相似文献   

7.
Numerous combinations of one-, two-, and three-chiral-component microemulsions have been previously prepared in our group, using N-dodecoxycarbonylvaline (DDCV), 2-hexanol, and ethyl acetate, dibutyl tartrate, or diethyl tartrate. A few results of the various formulations investigated suggested the possible presence of minor impurities in one or more components of the microemulsion. In this study, the purity of the current lots of R- and S-surfactant were measured, as was the subsequent effect of minor impurities on the relevant chromatographic figures of merit (CFOMs) that describe a chiral separation, i.e., efficiency, enantioselectivity, retention, migration window (elution range), and resolution. Two related methods are proposed for correcting enantioselectivities measured in the presence of chiral impurities in the chiral microemulsion.  相似文献   

8.
《Chemical physics letters》1987,141(4):357-360
Two-phase systems consisting of water-in-oil (W/O) microemulsions in equilibrium with excess water and oil-in-water (O/W) microemulsions in equilibrium with excess oil have been prepared using the surfactant sodium bis (2-ethylhexyl)sulphosuccinate (AOT) without cosurfactant. The interfacial tension of the planar interface separating the phases for the W/O case is only weakly dependent upon the volume fraction of droplets in the microemulsion phase whereas for the O/W case, the microemulsion droplet size increases and the tension drops as the dispersed volume fraction is increased.  相似文献   

9.
The dissipative particle dynamics simulation method is adopted to investigate the microemulsion systems prepared with surfactant (H1T1), oil (O) and water (W), which are expressed by coarse-grained models. Two topologies of O/W and W/O microemulsions are simulated with various oil and water ratios. Inverse W/O microemulsion transform to O/W microemulsion by decreasing the ratio of oil-water from 3:1 to 1:3. The stability of O/W and W/O microemulsion is controlled by shear rate, inorganic salt and the temperature, and the corresponding results are analyzed by the translucent three-dimensional structure, the mean interfacial tension and end-to-end distance of H1T1. The results show that W/O microemulsion is more stable than O/W microemulsion to resist higher inorganic salt concentration, shear rate and temperature. This investigation provides a powerful tool to predict the structure and the stability of various microemulsion systems, which is of great importance to developing new multifunctional microemulsions for multiple applications.  相似文献   

10.
Synthesis of nanoparticles by microemulsion method is an area of considerable current interest. Since the discovery of microemulsions, they have attained increasing significance both in basic research and in different industrial fields. Due to their unique properties, namely, ultralow interfacial tension, large interfacial area, thermodynamic stability and the ability to solubilize otherwise immiscible liquids. The uses and applications of microemulsions are numerous in chemical and biological fields. The nanoparticles not only are of basic scientific interest, but also have resulted in important technological applications, such as catalysts, high-performance ceramic materials, microelectronic devices, high-density magnetic recording and drug delivery. The microemulsion technique promises to be one of the versatile preparation method which enables to control the particle properties such as mechanisms of particle size control, geometry, morphology, homogeneity and surface area. This review aims to give a vivid look on the use of microemulsions for synthesizing and controlling the grain size and morphology of the nanoparticles and at the same time will summarize some recent works carried out in the synthesis of organic and inorganic nanoparticles by this method.  相似文献   

11.
Microemulsions in separation sciences   总被引:9,自引:0,他引:9  
Fundamental properties of microemulsions in relation to their utilization in liquid state separation methods of ionic and non-ionic compounds are briefly reviewed. Discussions are focused on some characteristics functions of o/w (L1) and w/o (L2) single-phase microemulsions and the two-phase microemulsion systems of Winsor I and Winsor II from the viewpoint of their use as separation media in solvent extraction, liquid chromatography and capillary electrophoresis. Through reviewing, practical advantages of the microemulsion media in the separation of metal ions and biological compounds are assessed.  相似文献   

12.
A theoretical model to clarify the molecular origin of the mechanical and thermal stabilities of O/W or W/O microemulsion is proposed in which the low concentration of surfactants (emulsifiers) is limited. We assume only a short range interaction between surfactants and a bending stiffness energy which expresses the deformation energy from a preferable monolayer membrane curvature. We have found an interrelation among the interfacial pressure, Δp, of the monolayer due to the adsorption of surfactants in the microemulsion interface, interfacial tensions of oil-water interface and of the microemulsion, and the bending stiffness energy. We conclude that the interfacial tension and the stable form of the microemulsions (O/W type or W/O type) are infuenced largely by the effect of the bending stiffness energy. The interrelationship between the therraodynamical and mechanical stabilities of microemulsions is clarified by the use of our assumption.  相似文献   

13.
The effects of surfactant mixing on interfacial tension and on microemulsion formation were examined for systems of air/water and water/supercritical CO2 (scCO2) interfaces and for water/scCO2 microemulsions. A fluorinated surfactant, sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO)2), was mixed with the three hydrocarbon surfactants, Pluronic L31, Tergitol TMN-6, and decyltrimethylammonium chloride (DeTAC), at equimolar ratio. For all the cases, the interfacial tension was significantly lowered by the mixing. The positive synergistic effect suggests that the mixed surfactants tend to pack more closely on the interface than the pure constituents. It was found, however, that the microemulsion formation in scCO2 was never facilitated by the mixing, except for the case of TMN-6. This is probably due to the segregation of the surfactants into hydrocarbon-rich and fluorocarbon-rich phases on the microemulsion surface.  相似文献   

14.
The phase boundaries of the middle-phase microemulsion for NaCl/SDS/H2O/1-heptane/1-pentanol systems in the absence of polymer and in the presence of unmodified poly(acrylamide) (PAM) and hydrophobically modified poly(acrylamide) (HMPAM) have been determined at varying salt concentrations. These three middle-phase microemulsions (with HMPAM, with PAM, and without polymer) were studied using interfacial tension measurement, steady-state fluorescence, and time-resolved fluorescence quenching. Compared to the polymer-free system and the system with PAM, the addition of HMPAM significantly enlarges the range of the salt concentrations for the formation of the middle-phase microemulison and causes both the excess oil and aqueous phases to increase in volume at the expense of the middle-phase microemulsion. For the middle-phase microemulsion with HMPAM, the interfacial tensions of the microemulsion phase with the excess oil phase and with the excess aqueous phase are all ultralow and exhibit higher values than those with PAM and without polymer. At the same salt concentration, the apparent surfactant aggregation number in the middle-phase microemulsion with HMPAM has the smallest value among these three systems. All results indicate that the strong interaction of surfactant with hydrophobically modified polymer has a large effect on the formation and properties of the middle-phase microemulsion.  相似文献   

15.
Abstract

We have measured the interfacial tensions, vs. oil and brine, the electric conductivity and the magnetic susceptibility of microemulsions as a function of brine concentration and temperature.

The middle phase microemulsions exhibit the lowest interfacial tension, a sharp increase in the microemulsion/brine conductivity ratio and a maximum of the (diamagnetic) susceptibility.

The possibility of a percolative process and chemical or physical changes in the middle phase are discussed.  相似文献   

16.
Measurements of the interfacial tension, γ, for water-CO2-perfiuoropoly ether (PFPE) ionic surfactant systems are utilized to understand the surfactant affinity for the various phases and adsorption at the interface. A marked decrease in γ with salinity is observed as salt screens electrostatic repulsion and induces microemulsion formation, as confirmed with dynamic light scattering. In several cases, the interfacial tension goes through an unusual maximum with salinity, which is explained in terms of competition between surfactant affinity for the various phases and microemulsion formation. Fundamental studies of interfacial properties provide important insight for designing surfactants and experimental conditions to achieve the desired properties of water/CO2 microemulsions and emulsions.  相似文献   

17.
The phase behaviors, interfacial composition, thermodynamic properties and structural characteristics of water-in-oil microemulsions under varied molar ratio of water to surfactant (omega) at 303 K and also by varying temperatures at a fixed omega(=40) by mixing with 1-pentanol and decane or dodecane in absence and presence of sodium chloride have been studied by the method of dilution. The surfactants used were cetyl pyridinium chloride (CPC), sodium dodecyl sulfate (SDS) and polyoxyethylene (23) lauryl ether (Brij-35). The compositions of 1-pentanol and the surfactant at the interfacial region, the distribution of 1-pentanol between the interfacial region and the continuous oil phase, and the effective packing parameter (P(eff)) at the threshold level of stability have been estimated. The thermodynamics of transfer of 1-pentanol from the continuous oil phase to the interface have been evaluated. The structural parameters viz. radii of the droplet (R(e)) and the waterpool (R(w)), effective thickness of the interfacial layer (d(I)), average aggregation numbers of surfactants (N (s)) and the cosurfactant (1-pentanol) (N (a)) and the number of droplets (N(d)) have also been estimated. The prospect of using these w/o microemulsions for the synthesis of nanoparticles with small size, have been discussed in the light of the radii of the droplet, and waterpool, the extent of variation of effective thickness of the droplet under varied molar ratio of water to surfactant and temperature. An attempt has been made to rationalize the results in a comprehensive manner.  相似文献   

18.
Pascoe R  Foley JP 《The Analyst》2002,127(6):710-714
A novel oil-in-water microemulsion incorporating the chiral surfactant dodecoxycarbonylvaline (DDCV) was used to achieve the rapid enantiomeric separation of pharmaceutical drugs by electrokinetic chromatography (EKC). Incorporation of DDCV into a microemulsion resulted in an elution range more than double that provided the micellar form of the surfactant aggregate. Interestingly, for the same compounds the enantioselectivity provided by the chiral DDCV microemulsions ranged from 1.06-1.30 for the neutral and cationic drugs, which was slightly higher than that provided by chiral DDCV micelles. The use of a low surface tension oil (ethyl acetate) permitted a much lower concentration of chiral surfactant to be employed; this, together with the use of a zwitterionic buffer (ACES) resulted in a very low conductivity microemulsion that allowed a higher separation voltage to be utilized, resulting in rapid enantiomeric separations (< 8 min.). Mobility matching of the buffer cation(s) was used to improve peak shape and efficiencies. In our limited survey of the phase diagram, the optimum composition of the microemulsion buffer was 1.0% (w/v) DDCV (30 mM), 0.5% (v/v) ethyl acetate, 1.2% (v/v) 1-butanol and 50 mM ACES buffer at pH 7.  相似文献   

19.
The bactericidal properties of myristic acid and curcumin were revealed in a number of studies. However, whether curcumin-loaded myristic acid microemulsions can be used to inhibit Staphylococcus epidermidis, which causes nosocomial infections, has not been reported. Our aim was to develop curcumin-loaded myristic acid microemulsions to inhibit S. epidermidis on the skin. The interfacial tension, size distribution, and viscosity data of the microemulsions were characterized to elucidate the physicochemical properties of the curcumin microemulsions. Curcumin distribution in neonate pig skin was visualized using confocal laser scanning microscopy. Dermal curcumin accumulation (326?μg/g skin) and transdermal curcumin penetration (87?μg/cm(2)/d) were obtained with the microemulsions developed herein. Curcumin at the concentration of 0.86?μg/mL in the myristic acid microemulsion could inhibit 50% of the bacterial growth, which was 12 times more effective than curcumin dissolved in dimethyl sulfoxide (DMSO). The cocktail combination of myristic acid and curcumin in the microemulsion carrier synergistically inhibited the growth of S. epidermidis. The results we obtained highlight the potential of using curcumin-loaded microemulsions as an alternative treatment for S. epidermidis-associated diseases and acne vulgaris.  相似文献   

20.
Fluorescence correlation spectroscopy (FCS) has been successfully used to characterise water-in-oil (w/o) microemulsions. The investigated systems were stabilised by sodium bis-2-ethylhexyl sulphosuccinate (AOT) and the measured diffusion times have been related to the radii of the aggregated species, which for some systems, were separately determined by small-angle neutron scattering (SANS). We demonstrate that FCS is capable of measuring hydrodynamic radii of microemulsions rapidly and at surfactant concentrations lower than previously reported for other techniques. FCS was also used to specifically interrogate microemulsion droplets containing a fluorescently-labelled biomolecule, specifically phalloidin, a peptide fungal toxin from Amanita phalloides, and the enzyme -chymotrypsin (-CT). The microemulsion droplets are only marginally increased in size if a small peptide (phalloidin) is included in the water phase, whereas the droplet size is significantly increased when a larger protein (-CT) is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号