首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The autofluorescence properties of normal human skin in the near-infrared (NIR) spectral range were studied using Monte Carlo simulation. The light-tissue interactions including scattering, absorption and anisotropy propagation of the regenerated autofluorescence photons in the skin tissue were taken into account in the theoretical modeling. Skin was represented as a turbid seven-layered medium. To facilitate the simulation, ex vivo NIR autofluorescence spectra and images from different skin layers were measured from frozen skin vertical sections to define the intrinsic fluorescence properties. Monte Carlo simulation was then used to study how the intrinsic fluorescence spectra were distorted by the tissue reabsorption and scattering during in vivo measurements. We found that the reconstructed model skin spectra were in good agreement with the measured in vivo skin spectra from the same anatomical site as the ex vivo tissue sections, demonstrating the usefulness of this modeling. We also found that difference exists over the melanin fluorescent wavelength range (880-910 nm) between the simulated spectrum and the measured in vivo skin spectrum from a different anatomical site. This difference suggests that melanin contents may affect in vivo skin autofluorescence properties, which deserves further investigation.  相似文献   

2.
Abstract— Trans-urocanic acid (UCA) is found in the upper layer of the skin and UV irradiation induces its photoisomerization to cis -UCA. Cis -UCA mimics some of the immunosuppressive properties of UV exposure. The wavelength dependence for in vitro photoisomerization of trans-UCA (15 μM) over the spectral range 250 nm-340 nm (10 nm intervals) was determined. The action spectrum revealed that maximal cis-UCA production occurred at 280 nm, which is red-shifted by 10-12 nm from its absorption peak at 268 nm and differs markedly from the reported action spectra for cis-UCA production in mouse skin in vivo , which peaks at 300-310 nm. The reasons for the red shift between the in vitro and in vivo action spectra are not clear. There is limited evidence suggesting that the UV absorption maximum of trans- UCA red shifts from 268 nm in vitro to 310 nm on interaction with stratum corneum proteins in vivo. This phenomenon was investigated by applying trans-UCA (2.5 mg/cm2) in an oil emulsion to isolated human stratum corneum. After incubation at 37°C for 1 h, the absorption spectra of stratum corneum with UCA and with oil only were compared using a Xe arc source and a spectrora-diometer. A moderate red shift in trans-UCA absorption from ∼268 nm to 280 nm was observed. In summary, we suggest that the 10-12 nm red shift between the UCA absorption spectrum peak and the action spectrum peak in vitro may be accounted for by the wavelength dependence of quantum yields reported over the 254-313 nm range. The red shift between the in vitro and in vivo photoisomerization action spectra may result from the 10 to 12 nm red shift in the absorption of UCA in association with stratum corneum proteins, combined with increasing quantum yields over the 254-313 nm range.  相似文献   

3.
Fluorescence excitation and emission spectra of the heart tissues specimens have been measured ex vivo with the aim of finding out the optical differences characteristic for the human heart conduction system (the His bundle) and ventricular myocardium. The optimal conditions enhancing the spectral differences between the His bundle and myocardium were found by recording the fluorescence signal in the range from 420nm to 465nm under the excitation at wavelengths starting from 320nm to 370nm. In addition, the spectral differences between the His bundle and the connective tissue, which is often present in the heart, could be displayed by comparing the ratios of fluorescence intensities being measured at above 460nm under the preferred excitation of elastin and collagen. The left and right branches of the His bundle were visualized ex vivo in the interventricular septum of the human heart under illumination at 366nm.  相似文献   

4.
We present measurements of reflectance spectra from human skin in vivo in the spectral range from 250 to 700 nm. These measurements show that the reflectance from strongly pigmented skin is higher than that from weakly pigmented skin at wavelengths shorter than approximately 300 nm. We simulate the measured results using a new radiative transfer model developed to study light propagation in skin tissue. Our simulations mimic the measured spectra when scattering from melanosomes, and fragmented melanosomes are taken into account. Scattering from microstructures with high relative refractive indices plays a major role in tissue optics. Our results show that scattering from melanosomes and fragmented melanosomes is of particular significance.  相似文献   

5.
苯胺、苯酚在不同酸度的水溶液中具有不同的结构和紫外吸收光谱。以苯胺水溶液为测定液,以等浓度的苯胺酸溶液为参比液;以苯酚碱溶液为测定液,以等浓度的苯酚水溶液为参比液,分别测定其吸光度。结果表明:在280 nm处,当苯胺质量浓度为1~100 mg/L时;在287 nm处,当苯酚质量浓度为1~30 mg/L时,苯胺、苯酚的吸光度与浓度之间存在良好的线性关系,据此建立了紫外差示分光光度法。用此法不需分离直接测定了含苯系物废水中的苯胺和苯酚,回收率分别大于94.6%和96.7%。  相似文献   

6.
We present an in vivo study of the optical properties of common nevi, dysplastic nevi and malignant melanoma skin lesions in human subjects. Reflectance spectra were measured on 1379 skin lesions, in the visible and near-infrared spectral regions, using a spectral imaging system, in a clinical setting. Analysis of the data using a reflectance model revealed differences between the optical properties of melanin present in nevi and melanoma lesions. These differences, which are in agreement with our previous observations on average reflectance spectra, may be potentially useful for the noninvasive characterization of pigmented skin lesions and the early diagnosis of melanoma.  相似文献   

7.
Near infrared (NIR) spectroscopy has become a promising technique for the in vivo monitoring of glucose. Several capillary-rich locations in the body, such as the tongue, forearm, and finger, have been used to collect the in vivo spectra of blood glucose. For such an in vivo determination of blood glucose, collected NIR spectra often show some dependence on the measurement conditions and human body features at the location on which a probe touches. If NIR spectra collected for different oral glucose intake experiments, in which the skin of different patients and the measurement conditions may be quite different, are directly used, partial least squares (PLS) models built by using them would often show a large prediction error because of the differences in the skin of patients and the measurement conditions. In the present study, the NIR spectra in the range of 1300-1900 nm were measured by conveniently touching an optical fiber probe on the forearm skin with a system that was developed for in vivo measurements in our previous work. The spectra were calibrated to resolve the problem derived from the difference of patient skin and the measurement conditions by two proposed methods, inside mean centering and inside multiplicative signal correction (MSC). These two methods are different from the normal mean centering and normal multiplicative signal correction (MSC) that are usually performed to spectra in the calibration set, while inside mean centering and inside MSC are performed to the spectra in every oral glucose intake experiment. With this procedure, spectral variations resulted from the measurement conditions, and human body features will be reduced significantly. More than 3000 NIR spectra were collected during 68 oral glucose intake experiments, and calibrated. The development of PLS calibration models using the spectra show that the prediction errors can be greatly reduced. This is a potential chemometric technique with simplicity, rapidity and efficiency in the pretreatment of NIR spectra collected during oral glucose intake experiments.  相似文献   

8.
Degenerate two-photon absorption (TPA) spectral properties of five AFX chromophore solutions have been studied using a single and spectrally dispersed sub-picosecond white-light continuum beam. In a specially designed optical configuration, optical pathways inside the sample solution for different spectral components of the focused continuum beam were spatially separated from each other. Thus, the nondegenerate TPA processes coming from different spectral components can be eliminated, and the direct nonlinear absorption spectrum attributed to degenerate TPA processes can be readily obtained. Using this new technique, the complete TPA spectra for these five highly two-photon-active compounds (AF-380, AF-350, AF-295, AF-270, and AF-50) were obtained in the spectral range from 600 to 950 nm on an absolute scale of TPA cross section. The relationship between the molecular structures and their TPA spectral behaviors are discussed. In general the measured TPA spectra are not identical with the linear absorption spectra on the scale of absorbed photon(s) energy. Moreover, for some sample (such as AF-380), the TPA spectrum is totally different from the linear spectrum, which implies the difference of molecular transition pathways and selection rules for one- and two-photon excitation processes. At high excitation intensity levels (>or=15 GW/cm(2)), the saturation behavior of TPA transition can be observed obviously in AF-350 and AF-380 solutions that exhibit much higher nonlinear absorptivity than the other chromophores investigated.  相似文献   

9.
The temperature study of zinc phthalocyanine (ZnPc) thin layers deposited on (0 0 1) Si substrate using Raman, FT-IR absorption and photoluminescence (PL) methods are reported. The Raman scattering spectra of ZnPc layers were investigated in the spectral range 1250–1650 cm−1 and in the temperature range 100–500 K. The changes of spectral parameters such as the band position, integrated intensity and full width at half maximum (FWHM) of selected Raman modes while heating and cooling processes have been determined. The fast decrease of the frequency and the intensity of these modes observed with the increase of the temperature above 420 K, can be probably caused by the change of crystalline form of ZnPc thin layer. The FT-IR measurements have been performed in the temperature range 98–523 K. Our study allowed us to estimate the orientation of the molecular plane similar to these of CuPc thin films deposited on Si substrate. The Raman spectra have been compared with FT-IR spectra of ZnPc molecules in KBr pellets and thin layers of ZnPc on (0 0 1) Si substrate. The PL spectra of ZnPc layers were measured in the spectral range 350–1200 nm and in the temperature range 13–320 K. With increasing temperature from 13 to 175 K we observed the increase of PL bands at 1.76 and 1.85 eV which disappear reaching temperature above 200 K.  相似文献   

10.
We present an in vivo study of the optical properties of melanin present in melanocytic nevi of human subjects with Fitzpatrick skin type III (Caucasian descent) using optical spectroscopy. We show that the melanin absorption spectrum exhibits an exponential dependence on wavelength with a decay constant which follows a normal distribution characteristic of a random biological variable. Moreover, we demonstrate lack of correlation among melanin optical properties, melanin concentration and skin light scattering properties, which indicates that the true optical absorption of melanin can be measured free from confounding scattering effects. We also show that the average melanin absorption spectrum in vivo is in very good agreement with a previously reported oxygen photoconsumption action spectrum of melanin. Finally, we provide an overview of the emerging picture of the melanin absorption properties in vivo among various skin types and also among various skin lesions such as melanocytic nevi and melanoma.  相似文献   

11.
Two-dimensional materials have recently attracted attention due to their unique physical properties and promising applications. This work reports the electronic, linear and second-order nonlinear optical properties of aluminum nitride (AlN) monolayer by using a real-time first-principles approach based on Green's function theory. In this approach, quasi-particle corrections, crystal local field effects, and excitonic contributions are considered for investigating the linear and nonlinear responses. As a two-dimensional material with a wide direct gap of around 6.45 eV, the AlN monolayer exhibits strong resonances of absorption and second-harmonic spectra in the ultraviolet range. In the transparent spectral range from blue to deep ultraviolet (2.8–5.3 eV), strong peaks of second-order nonlinear susceptibility appear in the AlN monolayer with a large peak value of around 430 pm/V, which is one or two orders-of-magnitude larger than the nonlinear materials used in the ultraviolet range. The results presented in this work will find important applications for nonlinear imaging, spectroscopy, and nonlinear nanophotonics in the ultraviolet range.  相似文献   

12.
13.
A compact fluorosensor using three different ultraviolet light-emission diodes as excitation sources for fiber-optic recording of fluorescence spectra from samples is described. A compact integrated spectrometer with linear array wavelength recording is used, yielding a spectral resolution of about 8 nm. In two system implementations ultraviolet light-emitting diodes at 300, 340 and 395 nm, or at 360, 385 and 410 nm were used as excitation sources with typical emission halfwidths of 12 nm, each combined with a matching long-path colored-glass filter automatically brought into the fluorescence light flow for suppression of reflected light. Spectra from measurements on vegetation, human skin tumors and a rare-earth ion-based thermographic phosphor were recorded to illustrate the system performance.  相似文献   

14.
Photoemission electron microscopy is used to measure the absorption coefficients, εc, of intact iridal stroma melanosomes isolated from dark brown and blue–green human irides for the spectral range λ = 244–310 nm. These iridal stroma melanosomes were chosen because different colored irides produce organelles of varying eumelanin:pheomelanin ratios with similar size and morphology. Similar absorption spectra are found for the two types of melanosomes. The experimental spectra measured within are compared with both the extinction coefficient spectra obtained on soluble synthetic model systems and the monomeric precursors to each pigment.  相似文献   

15.
Melanin content and distribution in skin were studied by examining a patient with white, brown and blue skin tones expressed on skin affected by vitiligo. Both diffuse reflectance and autofluorescence spectra of the three distinction skin sites were measured and compared. Monte Carlo simulations were then performed to help explain the measured spectral differences. The modeling is based on a six-layer skin optical model established from published skin optical parameters and by adding melanin content into different locations in the model skin. Both the reflectance and fluorescence spectra calculated by Monte Carlo (MC) simulation were approximately in agreement with experimental results. The study suggests that: (1) trichrome vitiligo skin may be an ideal in vivo model for studying the effect of skin melanin content and distribution on skin spectroscopy properties. (2) Based on the skin optical model and MC simulation, the content and distribution of melanin in skin, or other component of skin could be simulated and predicted. (3) Both reflectance and fluorescence spectra provided information about superficial skin structures but fluorescence spectra are capable of providing information from deeper cutaneous structures. (4) The research method, including the spectral ratio method, the method of adding and modifying the melanin content in skin optical models, and MC simulation could be applied in other non-invasive optical studies of the skin.  相似文献   

16.
The photophysical properties, such as the UV-vis absorption spectra, triplet transient difference absorption spectra, triplet excited-state extinction coefficients, quantum yields of the triplet excited state, and lifetimes of the triplet excited state, of 10 novel zinc phthalocyanine derivatives with mono- or tetraperipheral substituents have been systematically investigated in DMSO solution. All these complexes exhibit a wide optical window in the visible spectral range and display long triplet excited-state lifetimes (140-240 mus). It has been found that the complexes with tetrasubstituents at the alpha-positions exhibit a bathochromic shift in their UV-vis absorption spectra, fluorescence spectra, and triplet transient difference absorption spectra and have larger triplet excited-state absorption coefficients. The nonlinear absorption of these complexes has been investigated using the Z-scan technique. It is revealed that all complexes exhibit a strong reverse saturable absorption at 532 nm for nanosecond and picosecond laser pulses. The excited-state absorption cross sections were determined through a theoretical fitting of the experimental data using a five-band model. The complexes with tetrasubstituents at the alpha-positions exhibit larger ratios of triplet excited-state absorption to ground-state absorption cross sections (sigma T/sigma g) than the other complexes. In addition, the wavelength-dependent nonlinear absorption of these complexes was studied in the range of 470-550 nm with picosecond laser pulses. All complexes exhibit reverse saturable absorption in a broad visible spectral range for picosecond laser pulses. Finally, the nonlinear transmission behavior of these complexes for nanosecond laser pulses was demonstrated at 532 nm. All complexes, and especially the four alpha-tetrasubstituted complexes, exhibit stronger reverse saturable absorption than unsubstituted zinc phthalocyanines due to the larger ratio of their excited-state absorption cross sections to their respective ground-state absorption cross sections.  相似文献   

17.
The electronic structure and optical properties of charged oligofluorenes were studied experimentally and theoretically. Measurements of the optical absorption spectra of charged oligofluorenes in dilute solutions have been performed by using the pulse radiolysis technique. In addition, optical absorption spectra of radical cations and anions in a solid matrix were measured after gamma-irradiation at 77 K. The optical absorption spectra were measured in the range of 440-2100 nm (0.6-2.8 eV) and compared with results from time-dependent density functional theory (TDDFT) calculations. The calculated charge induced deformations and charge distribution do not indicate the occurrence of polaronic effects. The potential energy profiles for rotation around the inter-unit bond show that oligofluorenes are nonplanar in their neutral state, while they tend to more planar structures in their charged state. The optical absorption spectra of charged oligofluorenes are dependent on the angle between neighboring units. TDDFT absorption energies shift to lower values with increasing chain length, which suggests that the charge delocalizes along the oligomer chain.  相似文献   

18.
A series of luminescent praseodymium complexes with different aromatic carboxylic acids have been synthesized and characterized. The photophysical properties of these complexes have been studied with ultraviolet spectra, phosphorescence spectra and fluorescence spectra. Ultraviolet absorption spectra show that the praseodymium complexes systems with aromatic carboxylate form the more extensive conjugated systems to be suitable for the distribution of electron in the whole coordination environment, resulting in the energy decrease and red-shifts of ultraviolet spectral bands. Phosphorescence spectra suggest that excited triplet state of aromatic carboxylic acids, which can indicate the energy match and intermolecular energy transfer process between the excited triplet state of ligands and the resonant emissive energy level of Pr ions. The emission spectra of all praseodymium complexes show two emission peaks under the excitation band of 245 nm at about 395 and 595 nm, respectively, while one peak at about 595 nm under 415 nm excitation, which attributed to be 1S0-->1I6 (395 nm) transition and the characteristic emission 1D2-->3H4 (595 nm) transition of Pr3+ ion. The 1S0-->1I6 transition can be speculated to belong to the transition of charge transfer state, and the 1D2-->3H4 can be further proved that there exists an antenna effect in the luminescence of praseodymium with aromatic carboxylic acids. In conclusion, the praseodymium complexes systems can realize the double proton light conversion both in the ultraviolet and visible region, which can be further studied to have potential application.  相似文献   

19.
The impact of photodegradation and mixing processes on the optical properties of dissolved organic matter (DOM) was examined using a distribution of absorption spectral slopes and fluorescence measurements in two Argentine lakes. By examining the variability of the absorption spectral slopes throughout the ultraviolet and visible wavelengths, it was possible to determine which wavelength intervals were most sensitive to dominant loss processes. For DOM photodegradation, results show that increases in the absorption spectral slope between 265 and 305 nm were highly sensitive to increased exposure to solar ultraviolet radiation. A slightly larger wavelength range (265-340 nm) was found to be influenced when both mixing and photodegradation processes were considered, in terms DOM residence time, DOM absorption and UV diffuse attenuation coefficients. This same interval of spectral slopes (265-340 nm) was found to highly correlate with changes in fluorescence emission/excitation in wavelengths that are typically associated with terrestrial humic-like DOM. The identification of specific wavelength intervals, rather than the use of standard wavelength intervals or ratios, improved our ability to identify the dominant dissolved organic matter (humic-like) and major loss mechanisms (photodegradation) in these lakes.  相似文献   

20.
Photobleaching kinetics of aminolevulinic acid-induced protoporphyrin IX (PpIX) were measured in the normal skin of rats in vivo using a technique in which fluorescence spectra were corrected for the effects of tissue optical properties in the emission spectral window through division by reflectance spectra acquired in the same geometry and wavelength interval and for changes in excitation wavelength optical properties using diffuse reflectance measured at the excitation wavelength. Loss of PpIX fluorescence was monitored during photodynamic therapy (PDT) performed using 514 nm irradiation. Bleaching in response to irradiances of 1, 5 and 100 mW cm-2 was evaluated. The results demonstrate an irradiance dependence to the rate of photobleaching vs irradiation fluence, with the lowest irradiance leading to the most efficient loss of fluorescence. The kinetics for the accumulation of the primary fluorescent photoproduct of PpIX also exhibit an irradiance dependence, with greater peak accumulation at higher irradiance. These findings are consistent with a predominantly oxygen-dependent photobleaching reaction mechanism in vivo, and they provide spectroscopic evidence that PDT delivered at low irradiance deposits greater photodynamic dose for a given irradiation fluence. We also observed an irradiance dependence to the appearance of a fluorescence emission peak near 620 nm, consistent with accumulation of uroporphyrin/coproporphyrin in response to mitochondrial damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号