首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The commingled technology is one of the most effective and alternative methodologies for producing more sustainable as well as uniformly distributed natural fiber reinforced composite without inflecting the shearing strength on yarns or reinforcing natural fiber. The term commingled encompasses the materials consisting of both polymer matrix and reinforcing materials over the same fabric cross-section used for the production of highly flexible, continuous fiber-reinforced thermoplastic prepregs. Nonetheless, the increased pathlength and high melt viscosity around 500–5000 Pa s of the molten thermoplastic makes the processing more difficult compared with other thermoset plastic (usually 100 Pa s). Where the commingled hybrid yarns can be considered as one of the promising preforms employed for long fiber reinforced composite because of low cost, ease of storage and manipulation, excellent flexibility, molding capacity, reduced pressure consolidation as well as impregnation time while processing and the ability to form complex-shaped reinforced composite parts. The parameters that affect the process of commingling controls the consolidation of hybrid yarns thermoplastic composite; the degree of commingling depends on the pressure, temperature, and production speed during a fixed period. Recently commingled thermoplastic composite has become one of the possible destines for a wide array of applications in aircrafts, automotive, and sporting goods. This paper reviews types of commingled plastic composite, various processing routes, and the influence of the processing parameters, their properties, and their application. The manufacturing and development of hybrid yarns through air-jet texturing, intermingling process, are also discussed concerning the attributes of advanced composites.  相似文献   

2.
The fabrication techniques now available for the production of highly oriented polymers are reviewed. These techniques include tensile drawing from both melt-spun and gel-spun polymers, extrusion under pressure from the melt, and hydrostatic extrusion, ram extrusion and die drawing in the solid phase. In addition, lyotropic and thermotropic liquid crystalline polymers offer new routes to very stiff and strong polymers. Following the review of processing methods, an account is given of low strain mechanical behaviour and its relationship to structure, thermal properties (including thermal conductivity and thermal expansion behaviour) and barrier properties (permeability to liquids and gases and solubility).  相似文献   

3.
Materials research is an interdisciplinary field in which engineers and physical scientists work together. Since the major binary oxides, nitrides, and carbides, which are currently used as high-performance ceramics, were discovered in the last century, the role of chemistry in the development of materials has become barely noticeable. This has changed only in the recent past as, for example, purity and defined morphology of starting powders were recognized as crucial parameters for enhancing the reliability of ceramic workpieces. While the application of chemical methods led to gradual–though significant–improvements, the true potential of chemistry lies rather in the exploitation of new chemical systems and the development of new preparative routes to already known materials. Such an approach is the preparation of ceramics from molecular or polymeric precursors. Herein we survey the most important contributions to those preparative routes starting from the pioneering work in the 1960s and the 1970s; a certain emphasis is placed on the concepts that we have applied to the preparation of multinary, nonoxide materials and amorphous inorganic networks. The name “amorphous high-performance ceramics” is in fact a contradiction in terms. Such materials are thermodynamically unstable with respect to the transformation or decomposition to crystalline phases, thus excluding their application in sensitive areas at high temperatures. However, the selection of element combinations for which the binding energies are derived from strong, local covalent bonds and which are therefore less dependent on a long-range crystalline order, can yield amorphous materials of remarkable thermal and mechanical durability. This is exemplified by novel quaternary ceramics in the Si/B/N/C system, for which an efficient synthesis, starting from raw materials suitable for industrial production, has been developed. For instance, a material of the composition SiBN3C remains amorphous up to 1900°C, which is unique, and, with respect to oxidation, is the most stable nonoxide ceramic known to date. Another advantage of this in several respects unsurpassed material is the simple way, in which the viscosity of the polymeric precursors can be adjusted to various methods of shaping. So far infiltrations and coatings have been realized. Most developed is the preparation of fibers, which in terms of their performance characteristics are significantly better than those currently available.  相似文献   

4.
TiO2 can be prepared in the form of powder, crystals, or thin films. Liquid-phase processing is one of the most convenient and utilized methods of synthesis. It has the advantage of allowing control over the stoichiometry, production of homogeneous materials, formation of complex shapes, and preparation of composite materials. However, there may be some disadvantages such as expensive precursors, long processing times, and the presence of carbon as an impurity. In comparison, the physical production techniques, although environment friendly, are limited by the size of the produced samples which is not sufficient for a large-scale production. The most commonly used solution routes in the synthesis of TiO2 are reviewed.  相似文献   

5.
Conductive coatings have been studied for static dissipation and as microwave absorbing materials. The doping process of polyaniline (PAni), which makes it conductive, is an important stage that determines the coating performance. For this purpose, polyaniline was doped by reactive processing in a torque rheometer using different molar ratios between PAni and acid (PAni:CSA) at three different temperatures (80, 90, and 100°C). Aqueous solution doping was also used in the ratio of 1:2 of PAni/CSA, with the aim to investigate the influence of different methods of PAni doping on its characteristics and, consequently, on the performance of coatings. Thermal analyses of the processed materials showed that PAni doped by both routes, reactive and solution processing, showed similar behaviors. X‐ray diffraction analyses showed a semicrystalline structure for the PAni–CSA doped by reactive processing using high CSA concentrations and temperature. It was also observed that the doping process affects the dispersion of the components into the conductive coatings. Microwave absorption measurements (8–12 GHz) of PU‐doped PAni blends showed the dependence of the doping type, the PAni–CSA concentration, and the mixing conditions of the components on the coating performance; it was found up to 99% of attenuation of the incident radiation for some composites in a narrow frequency range. The microwave absorption efficiency of the coating samples prepared by using the reactive doping process indicates the advantage of this methodology over solution doping. Moreover, the reactive process addresses the environmental requirements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The successful translation from conception to practice of processes based on immobilized biocatalyst technology has been slower than anticipated. There are severe barriers, both technical and economic, limiting the introduction of immobilized biocatalyst technology to replace conventional processing procedures and processes for the production of chemicals by synthetic or fermentative routes. A small number of immobilized enzyme processes are in operation commercially, the most noteworthy being in food-related processes and in the pharmaceutical industry, where they are used for carbohydrate conversions and antibiotic transformations, respectively. There does not, as yet, appear to be any large-scale industrial application of immobilized cell technology. Examples from our laboratory—immobilized yeast for ethanol production andAspergillus niger for citric acid synthesis—illustrate the problems that have to be overcome.  相似文献   

7.
Design features of production methods for bonded–riveted joints are considered on the microand macroscales. It is shown that it is reasonable to employ the decomposition (partitioning) principle during the design of production methods of glued-mechanical connections. The effect of processing factors on the quality of bonded–riveted joints at various scale levels is considered. An algorithm for an engineering solution for creation of bonded–riveted joints in production and maintenance is developed.  相似文献   

8.
The goal of this work was to prepare cellulosic nanoparticles using different processing routes, viz. a combination of mechanical shearing, acid and enzymatic hydrolysis. It was shown that the enzymatic hydrolysis pretreatment of bleached sisal pulp helps the preparation of well individualized rod-like nanocrystals. The morphology of cellulose fibers and nanoparticles was determined by scanning and transmission electron microscopies, respectively. The main outcome of this study indicated the usefulness of the enzymatic treatment for cellulose nanocrystals production. The enzymatic treatment allowed production of a broad range of cellulosic nanoparticles. This investigation proved that the distinction between MFC and whiskers to describe such cellulose nanoparticles is not sufficient. Indeed, it appears essential to indicate the pretreatment performed.  相似文献   

9.
The dehydropolymerization of amine–boranes, exemplified as H2RB⋅NR′H2, to produce polyaminoboranes (HRBNR′H)n that are inorganic analogues of polyolefins with alternating main-chain B−N units, is an area with significant potential, stemming from both fundamental (mechanism, catalyst development, main-group hetero-cross-coupling) and technological (new polymeric materials) opportunities. This Concept article outlines recent advances in the field, covering catalyst development and performance, current mechanistic models, and alternative non-catalytic routes for polymer production. The substrate scope, polymer properties and applications of these exciting materials are also outlined. Challenges and opportunities in the field are suggested, as a way of providing focus for future investigations.  相似文献   

10.
The review addresses synthetic approaches to composite materials based on graphene oxide and nano tin dioxide and their electrochemical properties as anodes for lithium- and sodiumion batteries. The introduction of a carbon matrix into the composite material improves the electrochemical characteristics of the anodes. In most methods, the synthesis of graphene oxide–tin dioxide composites is based on the use of tin(II,IV) chlorides as the starting compounds, and the most efficient electrode materials were obtained by the hydrothermal or solvothermal routes. Thermal processing is much more economic than the gas phase deposition protocols but requires heating of a large volume of dilute tin oxide dispersions in an autoclave. Mechanochemistry (ball milling) is also economically unfavorable for the synthesis of composite materials. In addition, large volumes of acidic wastes that should be neutralized and safely discarded are formed when tin chlorides are used. An alternative environmentally friendly technique based on the use of aqueous peroxide solutions can be applied for the production of efficient anode materials based on graphene oxide and tin dioxide. This process does not involve acidic wastes, uses hydrogen peroxide and ethanol as reagents, and accomplishes film deposition (coating) at room temperature. Final thermal treatment is required only for the active material, which minimizes energy expenses and equipment costs.  相似文献   

11.
The solid‐state three‐dimensional ordering of polyaniline–dopant complexes was investigated with four structurally different sulfonic acid dopants. The doped materials were produced in three different ways: polyaniline emeraldine base doped with sulfonic acid (aqueous route), in situ polymerization at the organic–water solvent interface (interfacial route), and in situ polymerization in organic and aqueous solvent mixtures (bilayer route). p‐Toluenesulfonic acid (PTSA), 5‐sulfosalicilic acid (SSA), camphorsulfonic acid (CSA), and dodecylbenzene sulfonic acid (DBSA) were employed as dopants. The conductivity of the aqueous‐route samples showed 10 and 100 times higher conductivity than the interfacial and bilayer routes, respectively. WXRD studies suggested that the crystallinity of the doped samples was dependent on both the structure of the dopants and the polymerization techniques. DBSA increases the polyaniline interplanar distance and produced highly crystalline materials via the aqueous and bilayer routes but failed with the interfacial route because of poor solubility in water. CSA, PTSA, and SSA produced highly crystalline samples by the interfacial route but failed with the aqueous (except for CSA) and bilayer routes. SEM analysis revealed that the doped materials of the interfacial route had excellent continuous morphology and uniform submicrometer‐size particle distributions in comparison with those of the aqueous and bilayer routes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1321–1331, 2005  相似文献   

12.
The discovery of new enzymes with greater activity and specificity opens new, simple routes for synthetic processes, and consequently, new methods to solve environmental problems. A number of nitrile-related enzymes have been screened over the past few years for use in developing synthetic applications. Microbial nitrile hydratase (NHase) has great potential as a catalyst in organic chemical processing because the enzyme can convert nitriles to the corresponding higher value amides under mild conditions, and has now been applied to the industrial productions of acrylamide and nicotinamide. Particularly, the former production is the first successful example of a bioconversion process for the manufacture of a commodity chemical. The characterization of the enzyme at the molecular level has provided new insights into how the molecular structure determines the enzyme function, and how the regulatory system controls the expression of the enzyme genes to improve the enzyme and the NHase-dependent process.  相似文献   

13.
The production of effective drugs has continuously been a challenging process for researchers due to the occurrence of resistive diseases. Drugs derived from natural product-based compounds as an active scaffold have gained interest in drug development due to a wide range of biological properties. Benzoheterodiazepines, a natural product derivative of bicyclic chalcones have been widely reported with various therapeutic potentials. This review discusses current synthetic methods in the preparation of benzoheterodiazepine derivatives (i.e., homocyclic benzoheterodiazepine, heterocyclic benzoheterodiazepine, bis-benzoheterodiazepine, and fused benzoheterodiazepine) via two-pot and one-pot synthetic routes. Several reaction protocols following both synthetic routes have been developed for efficient and higher yields that offer access to different functionalization of benzoheterodiazepines are comprehensively described. This review is important in the heterocyclic chemistry of benzoheterodiazepines and pharmacological industries in drug development processes.  相似文献   

14.
Two possible synthetic routes leading to 1,4-benzodiazepine derivatives comprising an additional heterocyclic ring at position 1–3 have been studied. The first approach (scheme 1) consisted in subjecting intermediates VII and XII to the Bischler-Napieralski reaction while the second one (scheme 2) was based on intramolecular dehydration of amino ketone (XIX); both routes did however fail to yield the expected product XIII.  相似文献   

15.
In order to enhance the mechanical properties of wet gels for aerogel production, aging studies by using three different routes was performed. The wet gels were prepared from a polyethoxydisiloxane precursor by using HF as a catalyst. The three different aging routes studied were i) aging in sealed mould, ii) aging in solvent and iii) aging in simulated pore liquid, i.e. a solvent with small amounts of water and HF resembling the mother liquor. All aging processes gave stronger and stiffer wet gels however, a maximum in strength and stiffness was observed after a certain aging time. The simulated pore liquids allowed short aging time in the range of 8 h to achieve the maximum mechanical strength, however the maximum in strength was lower than for the other two aging routes. From the wet gels, monolithic and transparent aerogels were obtained by supercritical drying at small-, mid- and large-scale. The aging strengthening process was successfully transferred to larger scales giving both lower density and higher transparency compared to small-scale.  相似文献   

16.
Two routes to the 38–75 fragment of a lysozyme analogue are reported. The two syntheses use the protected peptide fragments 38–49,50–54,55–60,61–67 and 68–75; the routes differ in the order of fragment combination with the DCCI/HONSu method being the preferred means of linking the fragments. Sephadex LH 60 proved to be a particularly useful matrix for the gel filtration of the large fragments involved in the synthesis.  相似文献   

17.
A series of silica xerogels having rhodamine B (RhB) as a template and Ti centers were synthesized by distinct sol–gel routes, namely, acid-catalyzed, base-catalyzed, acid-catalyzed with base-catalyzed (two steps) hydrolytic routes and a FeCl3-catalyzed non-hydrolytic route. The interaction of RhB with the prepared silica matrix was investigated by Fourier transform infrared spectroscopy, attenuated total reflectance, diffuse reflectance spectroscopy in the ultraviolet–visible region, Raman spectroscopy, mass spectrometry, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and confocal microscopy. Raman spectroscopy suggested the presence of Ti–O and Si–O–Ti moieties within the silica matrix. Infrared band shifts provided insight into potential interaction sites. Taking into account the results from ART, XPS, PL and confocal microscopy, encapsulation of RhB preferentially occurs inside the silica network for acid 1, basic and two-steps routes, and the presence of Ti occurs on the surface of the silica occurs for acid 2, basic and two-steps routes. Also, we have shown that although the structural characteristics of the encapsulated and extracted systems are affected by the route, the molecular structure is conserved during and after the encapsulation process.  相似文献   

18.
Alkoxide‐based molecular routes used as single‐source precursors for the synthesis of ultrafine materials with correct stoichiometry ratios have become an area of intense scientific interest due to the technological relevance in terms of simple equipment, low‐temperature processing and low cost. The crystallization behavior of allied compounds can be controlled with the help of tuning the properties of different chelating agents in the reaction conditions to increase the solubility of metal alkoxides. Physico‐chemical studies of alkoxides and their derivatives were carried out using FTIR, NMR, mass spectrometry, thermogravimetric analysis (TGA)–differential thermal analysis (DTA) and scanning electron microscopy (SEM). The mass spectra show the same types of fragmentation pattern in the compounds. The X‐ray diffraction patterns show enhanced homogeneity. TGA–DTA measurements show that thermal decomposition occurs in steps and depends entirely on the chemical composition and the synthesis route. The SEM observations reveal a high microstructural uniformity of polycrystalline nature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The obtention of reliable and high performance piezoelectric ceramics for uses at high temperatures is still an open issue in the field of electroceramics. The materials used nowadays for such applications present limitations due to different causes: low piezoelectric coefficients, difficulties in processing that lead to the necessary use of single crystals, high cost of raw materials and more. In this sense, an increasing interest in materials with the so-called Aurivillius-type structure has occurred during recent years, due to their relatively high piezoelectric coefficients and high ferro–paraelectric phase transition temperature. However, some difficulties must be overcome, such as processing for obtaining highly dense ceramics and determining their real piezoelectric behaviour at high temperature. In this work, a review of the processing and properties of ceramics with this structure is shown. Effects of the use of precursors obtained by an alternative route mechanical activation on the microstructure are explained. A complete piezoelectric characterization at working temperatures (>300 °C), barely found in the literature, is also shown. The effects of trapped charges in the dielectric permittivity and in the piezoelectric radial resonance are also discussed.  相似文献   

20.
左旋薄荷醇的合成现状及进展   总被引:1,自引:0,他引:1  
陈旭敏  黄山  陆涛  赵小龙  姜标 《有机化学》2009,29(6):884-890
阐述了左旋薄荷醇的理化性质及其应用现状和全球生产状况. 介绍了薄荷醇的合成思路、已经工业化的合成路线和一些有较高工业应用价值的路线, 并介绍了关于这些路线的最新研究进展. 最后对所介绍的路线进行了总结, 展望了其发展前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号