首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Thermogravimetry combined with mass spectrometry has been used to study the thermal decomposition of a synthetic ammonium jarosite. Five mass loss steps are observed at 120, 260, 389, 510 and 541°C. Mass spectrometry through evolved gases confirms these steps as loss of water, dehydroxylation, loss of ammonia and loss of sulphate in two steps. Changes in the molecular structure of the ammonium jarosite were followed by infrared emission spectroscopy (IES). This technique allows the infrared spectrum at the elevated temperatures to be obtained. IES confirms the dehydroxylation to have taken place by 300°C and the ammonia loss by 450°C. Loss of the sulphate is observed by changes in band position and intensity after 500°C.  相似文献   

2.
Thermal decomposition of jarosites of potassium,sodium and lead   总被引:1,自引:0,他引:1  
Summary Jarosites are a group of minerals formed in evaporite deposits and form a component of efflorescence. As such the minerals can function as cation and heavy metal collectors. Thermogravimetry coupled to mass spectrometry has been used to study three Australian jarosites which are predominantly K, Na and Pb jarosites. Mass loss steps of K-jarosite occur over the 130 to 330 and 500 to 622°C temperature range and are attributed to dehydroxylation and desulphation. In contrast the behaviour of the thermal decomposition of Na-jarosite shows three mass loss steps at 215 to 230, 316 to 352 and 555 to 595°C. The first mass loss step for Na-jarosite is attributed to deprotonation. For Pb-jarosite two mass loss steps associated with dehydroxylation are observed at 390 and 418°C and a third mass loss step at 531°C is attributed to the loss of SO3. Thermal analysis is an excellent technique for the study of jarosites. The analysis depends heavily on the actual composition of the jarosite.  相似文献   

3.
The thermal decomposition of hydronium jarosite and ammoniojarosite was studied using thermogravimetric analysis and mass spectrometry, in situ synchrotron X-ray diffraction and infrared emission spectroscopy. There was no evidence for the simultaneous loss of water and sulfur dioxide during the desulfonation stage as has previously been reported for hydronium jarosite. Conversely, all hydrogen atoms are lost during the dehydration and dehydroxylation stage from 270 to 400 °C and no water, hydroxyl groups or hydronium ions persist after 400 °C. The same can be said for ammoniojarosite. The first mass loss step during the decomposition of hydronium jarosite has been assigned to the loss of the hydronium ion via protonation of the surrounding hydroxyl groups to evolve two water molecules. For ammoniojarosite, this step corresponds to the protonation of a hydroxyl group by ammonium, so that ammonia and water are liberated simultaneously. Iron(II) sulfate was identified as a possible intermediate during the decomposition of ammoniojarosite (421–521 °C) due to a redox reaction between iron(III) and the liberated ammonia during decomposition. Iron(II) ions were also confirmed with the 1,10-phenanthroline test. Iron(III) sulfate and other commonly suggested intermediates for hydronium and ammoniojarosite decomposition are not major crystalline phases; if they are formed, then they most likely exist as an amorphous phase or a different low temperature phases than usual.  相似文献   

4.
The thermal decomposition of beaverite and plumbojarosite was studied using a combination of thermogravimetric analysis coupled to a mass spectrometer. The mineral beaverite Pb(Fe,Cu)3(SO4)2(OH)6 decomposes in three stages attributed to dehydroxylation, loss of sulphate and loss of oxygen, which take place at 376 and 420, 539 and 844°C. In comparison three thermal decomposition steps are observed for plumbojarosite PbFe6(SO4)4(OH)12 at 376, 420 and 502°C attributed to dehydroxylation; loss of sulphate occurs at 599°C; and loss of oxygen and formation of lead occurs at 844 and 953°C. The temperatures of the thermal decomposition of the natural plumbojarosite were found to be less than that for the synthetic jarosite. A comparison of the thermal decomposition of plumbojarosite with argentojarosite is made. The understanding of the chemistry of the thermal decomposition of minerals such as beaverite, argentojarosite and plumbojarosite and related minerals is of vital importance in the study known as ‘archeochemistry’.  相似文献   

5.
Plumbojarosite and argentoplumbojarosite were sources of lead and silver in ancient and medieval times. The understanding of the chemistry of the thermal decomposition of these minerals is of vital importance in ‘archeochemistry’. The thermal decomposition of plumbojarosite was studied using a combination of thermogravimetric analysis coupled to a mass spectrometer. Three mass loss steps are observed at 376, 420 and 502 °C. These are attributed to dehydroxylation, loss of sulphate occurs at 599 °C, and loss of oxygen and formation of lead occurs at 844 and 953 °C. The temperatures of the thermal decomposition of the natural jarosite were found to be less than that for the synthetic jarosite. This is attributed to a depression of freezing point effect induced by impurities in the natural jarosite. Raman spectroscopy was used to study the structure of plumbojarosite. Plumbojarosites are characterised by stretching bands at 1176, 1108, 1019 and 1003 cm−1 and bending modes at 623 and 582 cm−1. Changes in the molecular structure during thermal decomposition were followed by infrared emission spectroscopy. The technique shows the loss of intensity in the hydroxyl stretching region attributed to dehydroxylation. Loss of sulphate only occurs after dehydroxylation. Lead is formed at higher temperatures through oxygen evolution.  相似文献   

6.
Differential scanning calorimetry shows two endotherms at 75 and 225°C for synthetic goethite. The latter endotherm is strongly asymmetric on the low temperature side. The endotherms were attributed to the loss of water and the dehydroxylation of the goethite. The temperature of the endotherms and the enthalpy of the phase change were found to be linear functions of the percentage of aluminium substitution into the goethite. High-resolution thermogravimetric analysis of goethite showed three mass loss steps, occurring at ~175, 196 and 263°C. The temperatures of these mass loss steps and the percentage of mass loss were also linearly related to the degree of Al substitution. The use of infrared emission spectroscopy confirmed the temperature of dehydroxylation. The observation of the low temperature dehydroxylation of goethite and its relation to ancient aboriginal cave art is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The thermal decomposition of natural iowaite of formula Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O was studied by using a combination of thermogravimetry and evolved gas mass spectrometry. Thermal decomposition occurs over a number of mass loss steps at 60°C attributed to dehydration, 266 and 308°C assigned to dehydroxylation of ferric ions, at 551°C attributed to decarbonation and dehydroxylation, and 644, 703 and 761°C attributed to further dehydroxylation. The mass spectrum of carbon dioxide exhibits a maximum at 523°C. The use of TG coupled to MS shows the complexity of the thermal decomposition of iowaite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Thermogravimetric and differential thermogravimetric analysis has been used to characterize alunite of formula [K2(Al3+)6(SO4)4(OH)12]. Thermal decomposition occurs in a series of steps (a) dehydration up to 225°C, (b) well defined dehydroxylation at 520°C and desulphation which takes place as a series of steps at 649, 685 and 744°C.The alunite minerals were further characterized by infrared emission spectroscopy (IES). Well defined hydroxyl stretching bands at around 3463 and 3449 cm?1 are observed. At 550°C all intensity in these bands is lost in harmony with the thermal analysis results. OH stretching bands give calculated hydrogen bond distances of 2.90 and 2.84–7 Å. These hydrogen bond distances increase with increasing temperature. Characteristic (SO4)2? stretching modes are observed at 1029.5, 1086 and 1170 cm?1. These bands shift to lower wavenumbers on thermal treatment. The intensity in these bands is lost by 550°C.  相似文献   

9.
The thermal decompositions of hydrotalcites with hexacyanoferrate(II) and hexacyanoferrate(III) in the interlayer have been studied using thermogravimetry combined with mass spectrometry. X-ray diffraction shows the hydrotalcites have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. XRD was also used to determine the products of the thermal decomposition. For the hydrotalcite decomposition the products were MgO, Fe2O3 and a spinel MgAl2O4. Dehydration and dehydroxylation take place in three steps each and the loss of cyanide ions in two steps.  相似文献   

10.
The thermal stability and thermal decomposition pathways for synthesized composite iowaite/woodallite have been determined using thermogravimetry analysis in conjunction with evolved gas mass spectrometry. Dehydration of the hydrotalcites occurred over a range of 56–70°C. The first dehydroxylation step occurred at around 255°C and, with the substitution of more iron(III) for chromium(III) this temperature increased to an upper limit of 312°C. This trend was observed throughout all decomposition steps. The release of carbonate ions as carbon dioxide gas initialised at just above 300°C and was always accompanied by loss of hydroxyl units as water molecules. The initial loss of the anion in this case the chloride ion was consistently observed to occur at about 450°C with final traces evolved at 535 to 780°C depending of the Fe:Cr ratio and was detected as HCl (m/z=36). Thus for this to occur, hydroxyl units must have been retained in the structure at temperatures upwards of 750°C. Experimentally it was found difficult to keep CO2 from reacting with the compounds and in this way the synthesized iowaite-woodallite series somewhat resembled the natural minerals.  相似文献   

11.
The mineral stichtite was synthesised and its thermal decomposition measured using thermogravimetry coupled to an evolved gas mass spectrometer. Mass loss steps were observed at 52, 294, 550 and 670°C attributed to dehydration, dehydroxylation and loss of carbonate. The loss of carbonate occurred at higher temperatures than dehydroxylation.  相似文献   

12.
Single crystal of tris thiourea chromium(III) sulphate was grown by slow evaporation technique at 303?K. The structural properties of the grown crystals were characterized by FTIR spectroscopy, UV spectroscopy and powder X-ray diffraction analysis. FTIR and UV spectra provide information about the presence of functional groups. Thermal analysis confirms that the crystal is thermally stable up to 163.48?°C. The TG curve presented a two-step mass loss on heating the compound at 0?C1,200?°C.  相似文献   

13.
The aim of this study is to employ a thermogravimetric analyzer coupled to a mass spectrometer to research into the influence of heating rate and sample mass on the response of the detector. That response is examined by means of a particular efflorescence taken from an acid mine drainage environment. This mixture of weathered products is mainly composed by secondary sulfate minerals, which are formed in evaporation conditions, appearing as efflorescence salts. Thermogravimetry coupled to mass spectrometry has been used to analyze the three main loss steps that happen when this combination of minerals is heated from 30 to 1,100 °C. This inorganic material is based on a mixture of hexahydrite, zinc sulfate hexahydrate, apjonite, gypsum, plumbojarosite, calcite, quartz, and magnetite. While heating, three main effluent gases evolved from this efflorescence. At a standard heating rate of 10 °C/min, loss of water (dehydration) occurred over 30–500 °C in four major steps, loss of carbon dioxide (decarbonisation) occurred over 200–800 °C in three steps, and loss of sulfur trioxide (desulfation) occurred over 400–1,100 °C in three steps. According to the results, thermal analysis is an excellent technique for the study of decomposition in these systems.  相似文献   

14.
Two evaporite minerals from the El Jaroso Ravine, Spain have been analysed by thermogravimetry coupled with an evolved gas mass spectrometer. X-ray diffraction results proved the evaporite minerals were a mixture of sulphates including the minerals magnesiocopiapite, coquimbite and possibly alunogen. Thermal decomposition of the unoxidised samples showed steps at 52, 99 and 143 °C confirmed by mass spectrometric results and attributed to adsorbed water, interstitial water and chemically bonded water. This evaporite mineral rock showed two higher temperature decomposition steps at 555 and 599 °C with mass losses of 19.6 and 7.8%. Slightly different temperatures for the thermal decomposition of the oxadada sample were observed at 52, 64.5 and 100 °C. Two higher temperature mass loss steps at 560.5 and 651 °C were observed for the oxidised sample. By comparison of the thermal analysis patterns of halotrichite and jarosite it can be shown that the El Jaroso samples are mineral sulphates and not halotrichite or jarosite.  相似文献   

15.
The name apophyllite refers to a specific group of phyllosilicates, a class of minerals that also includes the micas and are a class of minerals of similar chemical makeup that comprise a solid solution series, and includes the members apophyllite-(KF), apophyllite-(KOH) and apophyllite-(NaF). Fluorapophyllite apophyllite-(KF) and hydroxyapophyllite apophyllite-(KOH) are different minerals only because of the difference in percentages of fluorine to hydroxyl ions. Three apophyllite minerals have been characterised by thermogravimetric analysis and infrared spectroscopy. Dehydration takes place in several steps. Major mass losses occur at around 205–220 °C and at 400–429 °C. Minor mass losses are observed around 242–292 °C. It is proposed that dehydration occurs in the first decomposition step. Water is lost over the temperature range 125–250, 250–325 and 325–525 °C with the loss of 4.5, 0.5 and 3.0 mol of water. Water functions as zeolitic water and is also coordinated to the silica surfaces.  相似文献   

16.
Summary A combination of thermogravimetry and hot stage Raman spectroscopy has been used to study the thermal decomposition of the synthesised zinc substituted takovite Zn6Al2CO3(OH)16·4H2O. Thermogravimetry reveals seven mass loss steps at 52, 135, 174, 237, 265, 590 and ~780°C. MS shows that the first two mass loss steps are due to dehydration, the next two to dehydroxylation and the mass loss step at 265°C to combined dehydroxylation and decarbonation. The two higher mass loss steps are attributed to decarbonation. Raman spectra of the hydroxyl stretching region over the 25 to 200°C temperature range, enable identification of bands attributed to water stretching vibrations, MOH stretching modes and strongly hydrogen bonded CO32--water bands. CO32- symmetric stretching modes are observed at 1077 and 1060 cm-1. One possible model is that the band at 1077 cm-1is ascribed to the CO32- units bonded to one OH unit and the band at 1092 cm-1is due to the CO32- units bonded to two OH units from the Zn-takovite surface. Thermogravimetric analysis when combined with hot stage Raman spectroscopy forms a very powerful technique for the study of the thermal decomposition of minerals such as hydrotalcites.</o:p>  相似文献   

17.
The understanding of the thermal stability of zinc carbonates and the relative stability of hydrous carbonates including hydrozincite and hydromagnesite is extremely important to the sequestration process for the removal of atmospheric CO2. The hydration-carbonation or hydration-and-carbonation reaction path in the ZnO-CO2-H2O system at ambient temperature and atmospheric CO2 is of environmental significance from the standpoint of carbon balance and the removal of green house gases from the atmosphere. The dynamic thermal analysis of hydrozincite shows a 22.1% mass loss at 247°C. The controlled rate thermal analysis (CRTA) pattern of hydrozincite shows dehydration at 38°C, some dehydroxylation at 170°C and dehydroxylation and decarbonation in a long isothermal step at 190°C. The CRTA pattern of smithsonite shows a long isothermal decomposition with loss of CO2 at 226°C. CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of zinc carbonate minerals via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. The CRTA technology offers a mechanism for the study of the thermal decomposition and relative stability of minerals such as hydrozincite and smithsonite.  相似文献   

18.
The ageing characteristics of pyrotechnic compositions are influenced not only by temperature, but also by surrounding effects as humidity and vibrations. In this paper the thermal stability of the pyrotechnic system magnesium–sodium nitrate will be investigated. In an inert helium atmosphere two steps of mass loss, which were not completely separated from each other, were observed in the temperature range from 65 to 265°C: a mass loss of about 15% between 65 and 160°C and about 34% between 160 and 265°C. It is assumed that these two steps are caused by different processes. The separation between the two steps was not or hardly detectable for measurements that were performed in a nitrogen atmosphere. Using MS and FTIR (mass spectrometry/Fourier transform infrared spectroscopy) the evolved gases were analysed. Only above about 170°C evolving gases were detected (which means that during the first step no gases were detectable). The detected gas mainly consists of CO2, CO and N2O, with smaller amounts of NO2, NO and possibly HCN. A third step of mass loss (8–9%) was observed above 314°C. The process which caused this step of mass loss is considered not to contribute significantly to the ageing of the material at much lower temperatures of maximum 80°C, which is of interest in view of the use of the materials.  相似文献   

19.
Zn-Al hydrotalcites and Cu-Al hydrotalcites were synthesised by coprecipitation method and analysed by X-ray diffraction (XRD) and thermal analysis coupled with mass spectroscopy. These methods provide a measure of the thermal stability of the hydrotalcite. The XRD patterns demonstrate similar patterns to that of the reference patterns but present impurities attributed to Zn(OH)2 and Cu(OH)2. The analysis shows that the d003 peak for the Zn-Al hydrotalcite gives a spacing in the interlayer of 7.59 ? and the estimation of the particle size by using the Debye-Scherrer equation and the width of the d003 peak is 590 ?. In the case of the Cu-Al hydrotalcite, the d003 spacing is 7.57 ? and the size of the diffracting particles was determined to be 225 ?. The thermal decomposition steps can be broken down into 4 sections for both of these hydrotalcites. The first step decomposition below 100°C is caused by the dehydration of some water absorbed. The second stage shows two major steps attributed to the dehydroxylation of the hydrotalcite. In the next stage, the gas CO2 is liberated over a temperature range of 150°C. The last reactions occur over 400°C and involved CO2 evolution in the decomposition of the compounds produced during the dehydroxylation of the hydrotalcite.  相似文献   

20.
Thermal analysis complimented with evolved gas mass spectrometry has been applied to hydrotalcites containing carbonate prepared by coprecipitation and with varying divalent/trivalent cation ratios. The resulting materials were characterised by XRD, and TG/DTG to determine the stability of the hydrotalcites synthesised. Hydrotalcites of formula Mg4(Fe,Al)2(OH)12(CO3)·4H2O, Mg6(Fe,Al)2(OH)16(CO3)·5H2O, and Mg8(Fe,Al)2(OH)20(CO3)·8H2O were formed by intercalation with the carbonate anion as a function of the divalent/trivalent cationic ratio. XRD showed slight variations in the d-spacing between the hydrotalcites. The thermal decomposition of carbonate hydrotalcites consists of two decomposition steps between 300 and 400°C, attributed to the simultaneous dehydroxylation and decarbonation of the hydrotalcite lattice. Water loss ascribed to dehydroxylation occurs in two decomposition steps, where the first step is due to the partial dehydroxylation of the lattice, while the second step is due to the loss of water interacting with the interlayer anions. Dehydroxylation results in the collapse of the hydrotalcite structure to that of its corresponding metal oxides and spinels, including MgO, MgAl2O4, and MgFeAlO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号