首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Employment of the artificial amino acid 2-amino-isobutyric acid, aibH, in Cu(II) and Cu(II)/Ln(III) chemistry led to the isolation and characterization of 12 new heterometallic heptanuclear [Cu(6)Ln(aib)(6)(OH)(3)(OAc)(3)(NO(3))(3)] complexes consisting of trivalent lanthanide centers within a hexanuclear copper trigonal prism (aibH = 2-amino-butyric acid; Ln = Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10), Tm (11), and Yb (12)). Direct curent magnetic susceptibility studies have been carried out in the 5-300 K range for all complexes, revealing the different nature of the magnetic interactions between the 3d-4f metallic pairs: dominant antiferromagnetic interactions for the majority of the pairs and dominant ferromagnetic interactions for when the lanthanide center is Gd(III) and Dy(III). Furthermore, alternating current magnetic susceptibility studies reveal the possibility of single-molecule magnetism behavior for complexes 7 and 8. Finally, complexes 2, 5-8, 10, and 12 were analyzed using positive ion electrospray mass spectrometry (ES-MS), establishing the structural integrity of the heterometallic heptanuclear cage structure in acetonitrile.  相似文献   

2.
A series of complexes with [Fe(II)(2)(mu-OH)(2)] cores has been synthesized with N3 and N4 ligands and structurally characterized to serve as models for nonheme diiron(II) sites in enzymes that bind and activate O(2). These complexes react with O(2) in solution via bimolecular rate-limiting steps that differ in rate by 10(3)-fold, depending on ligand denticity and steric hindrance near the diiron center. Low-temperature trapping of a (mu-oxo)(mu-1,2-peroxo)diiron(III) intermediate after O(2) binding requires sufficient steric hindrance around the diiron center and the loss of a proton (presumably that of a hydroxo bridge or a yet unobserved hydroperoxo intermediate). The relative stability of these and other (mu-1,2-peroxo)diiron(III) intermediates suggests that these species may not be on the direct pathway for dioxygen activation.  相似文献   

3.
The synthesis, molecular structures, and spectroscopic properties of a series of valence-delocalized diiron(II,III) complexes are described. One-electron oxidation of diiron(II) tetracarboxylate complexes afforded the compounds [Fe(2)(mu-O(2)CAr(Tol))(4)L(2)]X, where L = 4-(t)BuC(5)H(4)N (1b), C(5)H(5)N (2b), and THF (3b); X = PF(6)(-) (1b and 3b) and OTf(-) (2b). In 1b-3b, four mu-1,3 carboxylate ligands span relatively short Fe...Fe distances of 2.6633(11)-2.713(3) A. Intense (epsilon = 2700-3200 M(-1) cm(-1)) intervalence charge transfer bands were observed at 620-670 nm. EPR spectroscopy confirmed the S = (9)/(2) ground spin state of 1b-3b, the valence-delocalized nature of which was probed by X-ray absorption spectroscopy. The electron delocalization between paramagnetic metal centers is described by double exchange, which, for the first time, is observed in diiron clusters having no single-atom bridging ligand(s).  相似文献   

4.
Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.  相似文献   

5.
The catalytic oxidation of triphenylphosphine in the presence of dioxygen by the diiron(II) complex [Fe(2)(micro-O(2)CAr(Tol))(2)(Me(3)TACN)(2)(MeCN)(2)](OTf)(2) (1), where (-)O(2)CAr(Tol) = 2,6-di(p-tolyl)benzoate and Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane, has been investigated. The corresponding diiron(III) complex, [Fe(2)(micro-O)(micro-O(2)CAr(Tol))(2)(Me(3)TACN)(2)](OTf)(2) (2), the only detectable iron-containing species during the course of the reaction, can itself promote the reaction. Phosphine oxidation is coupled to the catalytic oxidation of THF solvent to afford, selectively, the C-C bond-cleavage product 3-hydroxypropylformate, an unprecedented transformation. After consumption of the phosphine, solvent oxidation continues but results in the products 2-hydroperoxytetrahydrofuran, butyrolactone, and butyrolactol. The similarities of the reaction pathways observed in the presence and absence of catalyst, as well as (18)O labeling, solvent dependence, and radical probe experiments, provide evidence that the oxidation is initiated by a metal-centered H-atom abstraction from THF. A mechanism for catalysis is proposed that accounts for the coupled oxidation of the phosphine and the THF ring-opening reaction.  相似文献   

6.
The syntheses, structural determinations and magnetic studies of tetranuclear M(II)Ln(III) complexes (M = Ni, Zn; Ln = Y, Gd, Dy) involving an in situ compartmentalized schiff base ligand HL derived from the condensation of o-vanillin and 2-hydrazinopyridine as main ligand are described. Single-crystal X-ray diffraction reveals that all complexes are closely isostructural, with the central core composed of distorted {M(2)Ln(2)O(4)} cubes of the formulas [Ni(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(4)(H(2)O)(3.5)](ClO(4))(2)·3H(2)O (Ln = Y 1 and Gd 2), [Ni(2)Dy(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)(1.5)](ClO(4))·EtOH·H(2)O (3) and [Zn(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)](ClO(4))·2EtOH·1.5H(2)O (Gd 4 and Dy 5). The Ln(III) ions are linked by two hydroxo bridges and each M(II) ion is also involved in a double phenoxo-hydroxo bridge with the two Ln(III) ions, so that each hydroxo group is triply linked to the two Ln(III) and one M(II) ions. The magnetic properties of all complexes have been investigated. Ni(2)Y(2) (1) has a ferromagnetic Ni(II)Ni(II) interaction. A weak ferromagnetic Ni(II)Ln(III) interaction is observed in the Ni(2)Ln(2) complexes (Ln = Gd 2, Dy 3), along with a weak antiferromagnetic Ln(III)Ln(III) interaction, a D zero-field splitting term for the nickel ion and a ferromagnetic Ni(II)Ni(II) interaction. The isomorphous Zn(2)Ln(2) (Ln = Gd 4, Dy 5) does confirm the presence of a weak antiferromagnetic Ln(III)Ln(III) interaction. The Ni(2)Dy(2) complex (3) does not behave as a SMM, which could result from a subtractive combination of the Dy and Ni anisotropies and an increased transverse anisotropy, leading to large tunnel splittings and quantum tunneling of magnetization. On the other hand, Zn(2)Dy(2) (5) exhibits a possible SMM behavior, where its slow relaxation of magnetization is probably attributed to the presence of the anisotropic Dy(III) ions.  相似文献   

7.
The first 3d-4f-5d heterotrimetallic complexes using [W(V)(bipy)(CN)(6)](-) as a metalloligand were synthesized (bipy = 2,2'-bipyridine). The structural and magnetic properties of three [Cu(II)Ln(III)W(V)] complexes (Ln = Gd, Ho, Tb) are discussed.  相似文献   

8.
A dinucleating macrocycle, H(2)PIM, containing phenoxylimine metal-binding units has been prepared. Reaction of H(2)PIM with [Fe(2)(Mes)(4)] (Mes = 2,4,6-trimethylphenyl) and sterically hindered carboxylic acids, Ph(3)CCO(2)H or Ar(Tol)CO(2)H (2,6-bis(p-tolyl)benzoic acid), afforded complexes [Fe(2)(PIM)(Ph(3)CCO(2))(2)] (1) and [Fe(2)(PIM)(Ar(Tol)CO(2))(2)] (2), respectively. X-ray diffraction studies revealed that these diiron(II) complexes closely mimic the active site structures of the hydroxylase components of bacterial multicomponent monooxygenases (BMMs), particularly the syn disposition of the nitrogen donor atoms and the bridging μ-η(1)η(2) and μ-η(1)η(1) modes of the carboxylate ligands at the diiron(II) centers. Cyclic voltammograms of 1 and 2 displayed quasi-reversible redox couples at +16 and +108 mV vs ferrocene/ferrocenium, respectively. Treatment of 2 with silver perchlorate afforded a silver(I)/iron(III) heterodimetallic complex, [Fe(2)(μ-OH)(2)(ClO(4))(2)(PIM)(Ar(Tol)CO(2))Ag] (3), which was structurally and spectroscopically characterized. Complexes 1 and 2 both react rapidly with dioxygen. Oxygenation of 1 afforded a (μ-hydroxo)diiron(III) complex [Fe(2)(μ-OH)(PIM)(Ph(3)CCO(2))(3)] (4), a hexa(μ-hydroxo)tetrairon(III) complex [Fe(4)(μ-OH)(6)(PIM)(2)(Ph(3)CCO(2))(2)] (5), and an unidentified iron(III) species. Oxygenation of 2 exclusively formed di(carboxylato)diiron(III) compounds, a testimony to the role of the macrocylic ligand in preserving the dinuclear iron center under oxidizing conditions. X-ray crystallographic and (57)Fe M?ssbauer spectroscopic investigations indicated that 2 reacts with dioxygen to give a mixture of (μ-oxo)diiron(III) [Fe(2)(μ-O)(PIM)(Ar(Tol)CO(2))(2)] (6) and di(μ-hydroxo)diiron(III) [Fe(2)(μ-OH)(2)(PIM)(Ar(Tol)CO(2))(2)] (7) units in the same crystal lattice. Compounds 6 and 7 spontaneously convert to a tetrairon(III) complex, [Fe(4)(μ-OH)(6)(PIM)(2)(Ar(Tol)CO(2))(2)] (8), when treated with excess H(2)O.  相似文献   

9.
The synthesis and characterization of a family of Mn(2)(III)Mn(2)(II)Ln(III)(2) complexes (Ln = Gd (1), Tb (2), Dy (3), and Ho (4)) of formula [Mn(4)Ln(2)O(2)(O(2)CBu(t))(6)(edteH(2))(2)(NO(3))(2)] are reported, where edteH(4) is N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine. The analogous Mn(4)Y(2) (5) complex has also been prepared. They were obtained from reaction of Ln(NO(3))(3) or Y(NO(3))(3) with Mn(O(2)CBu(t))(2), edteH(4), and NEt(3) in a 2:3:1:2 molar ratio. The crystal structures of representative 1 and 2 were obtained, and their core consists of a face-fused double-cubane [Mn(4)Ln(2)(μ(4)-O(2-))(2)(μ(3)-OR)(4)] unit. Such double-cubane units are extremely rare in 3d metal chemistry and unprecedented in 3d-4f chemistry. Variable-temperature, solid-state dc and ac magnetic susceptibility studies on 1-5 were carried out. Fitting of dc χ(M)T vs T data for 5 gave J(bb) (Mn(III)···Mn(III)) = -32.6(9) cm(-1), J(wb) (Mn(II)···Mn(III)) = +0.5(2) cm(-1), and g = 1.96(1), indicating a |n, 0, n> (n = 0-5) 6-fold-degenerate ground state. The data for 1 indicate an S = 12 ground state, confirmed by fitting of magnetization data, which gave S = 12, D = 0.00(1) cm(-1), and g = 1.93(1) (D is the axial zero-field splitting parameter). This ground state identifies the Mn(II)···Gd(III) interactions to be ferromagnetic. The ac susceptibility data independently confirmed the conclusions about 1 and 5 and revealed that 2 displays slow relaxation of the magnetization vector for the Mn(4)Tb(2) analogue 2. The latter was confirmed as a single-molecule magnet by observation of hysteresis below 0.9 K in magnetization vs dc field scans on a single crystal of 2·MeCN on a micro-SQUID apparatus. The hysteresis loops also displayed well-resolved quantum tunneling of magnetization steps, only the second 3d-4f SMM to do so.  相似文献   

10.
Koner R  Lin HH  Wei HH  Mohanta S 《Inorganic chemistry》2005,44(10):3524-3536
A series of heterodinuclear Cu(II)Ln(III) and Ni(II)Ln(III) complexes, [M(II)L(1)Ln(III)(NO(3))(3)] (M = Cu or Ni; Ln = Ce-Yb), with the hexadentate Schiff base compartmental ligand N,N'-ethylenebis(3-ethoxysalicylaldiimine) (H(2)L(1)) have been synthesized and characterized. The X-ray crystal structure determinations of 13 of these compounds reveal that they are all isostructural. All of these complexes crystallize with the same orthorhombic P2(1)2(1)2(1) space group with closely similar unit cell parameters. Typically, the structure consists of a diphenoxo-bridged 3d-4f dinuclear core, self-assembled to two dimensions due to the intermolecular nitrate...copper(II) or nitrate...nickel(II) semicoordination and weak C-H...O hydrogen bonds. Despite that, the metal centers of the neighboring units are well separated (the ranges of the shortest intermolecular contacts (A) are (M...M) 7.46-7.60, (Ln...Ln) 8.56-8.69, and (M...Ln) 6.12-6.20). Variable-temperature (5-300 K) magnetic susceptibility measurements of all the complexes have been made. The nature of exchange interactions in the Cu(II)Ln(III) systems has been inferred from the Deltachi(M)T versus T plots, where Deltachi(M)T is the difference between the values of chi(M)T for a Cu(II)Ln(III) system and its corresponding Ni(II)Ln(III) analogue. Ferromagnetic interactions seem to be exhibited by the Cu(II)Gd(III), Cu(II)Tb(III), Cu(II)Dy(III), Cu(II)Ho(III), Cu(II)Tm(III), and Cu(II)Yb(III) complexes, while, for the Cu(II)Er(III) complex, no definite conclusion could be reached. On the other hand, among the lower members of the series, the complexes of Ce(III), Nd(III), and Sm(III) exhibit antiferromagnetic interactions, while the Cu(II)Pr(III) and Cu(II)Eu(III) analogues behave as spin-uncorrelated systems. The observations made here vindicate the proposition of Kahn (Inorg. Chem. 1997, 36, 930). The Deltachi(M)T versus T plots also suggest that, for most of the Cu(II)Ln(III) complexes, the exchange interactions are fairly strong, which probably could be related to the small dihedral angle (ca. 4 degrees) between the CuO(2) and LnO(2) planes.  相似文献   

11.
A convenient and one-pot synthetic method of lanthanide thiolate compounds was developed. An excess of metallic samarium, europium, and ytterbium directly reacted with diaryl disulfides in THF to give selectively Ln(II) thiolate complexes, [Ln(SAr)(&mgr;-SAr)(thf)(3)](2) (1, Ln = Sm; 2, Ln = Eu; Ar = 2,4,6-triisopropylphenyl), Yb(SAr)(2)(py)(4) (3, py = pyridine), and [{Ln(hmpa)(3)}(2)(&mgr;-SPh)(3)][SPh] (6, Ln = Sm; 7, Ln = Eu; 8, Ln = Yb; hmpa = hexamethylphosphoric triamide). Reaction of metallic lanthanides with 3 equiv of disulfides afforded Ln(III) thiolate complexes, Ln(SAr)(3)(py)(n)()(thf)(3)(-)(n)() (9a, Ln = Sm, n = 3; 9b, Ln = Sm, n = 2; 10, Ln = Yb, n = 3) and Ln(SPh)(3)(hmpa)(3) (11, Ln = Sm; 12, Ln = Eu; 13, Ln = Yb). Thus, Ln(II) and Ln(III) thiolate complexes were prepared from the same source by controlling the stoichiometry of the reactants. X-ray analysis of 8 revealed that 8 has the first ionic structure composed of triply bridged dinuclear cation and benezenethiolate anion [8, orthorhombic, space group P2(1)2(1)2(1) with a = 21.057(9), b = 25.963(7), c = 16.442(8) ?, V = 8988(5) ?(3), Z = 4, R = 0.040, R(w) = 0.039 for 5848 reflections with I > 3sigma(I) and 865 parameters]. The monomeric structures of 11 and 13 were revealed by X-ray crystallographic studies [11, triclinic, space group P&onemacr; with a = 14.719(3), b = 17.989(2), c = 11.344(2) ?, alpha = 97.91(1), beta = 110.30(2), gamma = 78.40(1) degrees, V = 2751.9(9) ?(3), Z = 2, R = 0.045, R(w) = 0.041 for 7111 reflections with I > 3sigma(I) and 536 parameters; 13, triclinic, space group P&onemacr; with a = 14.565(2), b = 17.961(2), c = 11.302(1) ?, alpha = 97.72(1), beta = 110.49(1), gamma = 78.37(1) degrees, V = 2706.0(7) ?(3), Z = 2, R = 0.031, R(w) = 0.035 for 9837 reflections with I > 3sigma(I) and 536 parameters]. A comparison with the reported mononuclear and dinuclear lanthanide thiolate complexes has been made to indicate that the Ln-S bonds weakened by the coordination of HMPA to lanthanide metals have ionic character.  相似文献   

12.
Herein, we report the synthesis, structural investigation, and magnetic and photophysical properties of a series of 13 [Zn(II)Ln(III)] heterodinuclear complexes, which have been obtained employing a Schiff-base compartmental ligand derived from o-vanillin [H(2)valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol)]. The complexes have been synthesized starting from the [Zn(valpn)(H(2)O)] mononuclear compound and the corresponding lanthanide nitrates. The crystallographic investigation indicated two structural types: the first one, [Zn(H(2)O)(valpn)Ln(III)(O(2)NO)(3)], contains 10-coordinated Ln(III) ions, while in the second one, [Zn(ONO(2))(valpn)Ln(III)(H(2)O)(O(2)NO)(2)]·2H(2)O, the rare earth ions are nine-coordinated. The Zn(II) ions always display a square-pyramidal geometry. The first structural type encompasses the larger Ln ions (4f(0)-4f(9)), while the second is found for the smaller ions (4f(8)-4f(11)). The dysprosium derivative crystallizes in both forms. Luminescence studies for the heterodinuclear compounds containing Nd(III), Sm(III), Tb(III), Dy(III), and Yb(III) revealed that the [Zn(valpn)(H(2)O)] moiety acts as an antenna. The magnetic properties for the paramagnetic [Zn(II)Ln(III)] complexes have been investigated.  相似文献   

13.
The use of 2-amino-isobutyric acid in Co/Ln chemistry has led to the isolation of two unique [Co(II)(6)Ln(III)] 3d-4f metallic cages in which the Ln(III) centre (Ln = Eu, Dy) is encapsulated within a Co(II)(6) trigonal prism.  相似文献   

14.
Isostructural Co(II)?Co(III)?Ln(III)? (Ln = Y (1), Gd (2) and Dy (3)) coordination clusters formed using the ligand Tris are the first examples of 3d-4f complexes involving this ligand and show weak ferromagnetic coupling between the Co(II) ions and slow relaxation (SMM) behaviour for 3.  相似文献   

15.
A series of diiron(II) complexes of the dinucleating ligand HPTP (N,N,N',N'-tetrakis(2-pyridylmethyl)-2-hydroxy-1,3-diaminopropane) with one or two supporting carboxylate bridges has been synthesized and characterized. The crystal structure of one member of each subset has been obtained to reveal for subset A a (micro-alkoxo)(micro-carboxylato)diiron(II) center with one five- and one six-coordinate metal ion and for subset B a coordinatively saturated (micro-alkoxo)bis(micro-carboxylato)diiron(II) center. These complexes react with O(2) in second-order processes to form adducts characterized as (micro-1,2-peroxo)diiron(III) complexes. Stopped-flow kinetic studies show that the oxygenation step is sensitive to the availability of an O(2) binding site on the diiron(II) center, as subset B reacts more slowly by an order of magnitude. The lifetimes of the O(2) adducts are also distinct and can be modulated by the addition of oxygen donor ligands. The O(2) adduct of a monocarboxylate complex decays by a fast second-order process that must be monitored by stopped-flow methods, but becomes stabilized in CH(2)Cl(2)/DMSO (9:1 v/v) and decomposes by a much slower first-order process. The O(2) adduct of a dicarboxylate complex is even more stable in pure CH(2)Cl(2) and decays by a first-order process. These differences in adduct stability are reflected in the observation that only the O(2) adducts of monocarboxylate complexes can oxidize substrates, and only those substrates that can bind to the diiron center. Thus, the much greater stability of the O(2) adducts of dicarboxylate complexes can be rationalized by the formation of a (micro-alkoxo)(micro-1,2-peroxo)diiron(III) complex wherein the carboxylate bridges in the diiron(II) complex become terminal ligands in the O(2) adduct, occupy the remaining coordination sites on the diiron center, and prevent binding of potential substrates. Implications for the oxidation mechanisms of nonheme diiron enzymes are discussed.  相似文献   

16.
This paper reports the synthesis, structures, and magnetic and optical properties of a series of gadolinium(III) (1a-4a) and europium(III) (1b-4b) complexes with nitronyl or imino nitroxide radicals. The crystal structures of compounds 1a and 1b consist of [Ln(III)(radical)(2)(NO(3))(3)] entities in which the gadolinium(III) (1a) or europium(III) ion (1b) is 10-coordinated to two nitronyl nitroxide radicals and three nitrato ligands. The crystal structures of compounds 2a-4a and 2b-4b consist of [Ln(III)(hfac)(3)(radical)] entities in which the gadolinium(III) (2a-4a) or europium(III) ion (2b-4b) is 8-coordinated to one nitronyl (2a and 2b) or one imino (3a, 4a and 3b, 4b) nitroxide radical and three hexafluoroacetylacetonato ligands. The gadolinium(III) complexes (1a-4a) are isostructural with their europium(III) analogues (1b-4b). The magnetic properties of the gadolinium complexes were studied. Along the series 1a-4a only compound 2a exhibits a ferromagnetic Gd(III)-radical coupling (J(Gd-rad) = +1.7 cm(-1)), while for the others this coupling is antiferromagnetic (1a: J(Gd-rad1) = -4.05 cm(-1) and J(Gd-rad2) = -0.80 cm(-1); 3a: J(Gd-rad) = -2.6 cm(-1); 4a: J(Gd-rad) = -1.9 cm(-1)). The first full luminescence spectra of lanthanide complexes with free radical ligands are reported between 650 and 1200 nm. The rich vibronic structure in luminescence and absorption spectra indicates that several excited states define the absorption spectra between 400 and 800 nm. Qualitative trends can be established between magnetic ground state properties and the energies and fine structure of the title compounds.  相似文献   

17.
He F  Tong ML  Chen XM 《Inorganic chemistry》2005,44(23):8285-8292
Facile one-pot reactions led to the formations of dinuclear [CuLn(hmp)2(NO3)3(H2O)2] (Ln = Tb (1.Tb), Gd (1.Gd), or La (1.La)), and trinuclear [Cu2Ln(mmi)4(NO3)(H2O)2](ClO4)(NO3).2H2O (Ln = Tb (2.Tb) or Gd (2.Gd)) and [Cu2La(mmi)4(NO3)2(H2O)](ClO4).2H2O (2.La) with polydentate ligands 2-(hydroxymethyl)-pyridine and 2-hydroxymethyl-1-methyl-imidazole. In these complexes, each pair of Cu(II) and Ln(III) ions is linked by a double mu-alkoxo bridge. The temperature dependences of the magnetic susceptibilities of 1 and 2 were investigated in the range of 2-300 K. The dinuclear and trinuclear Cu-Gd complexes exhibit ferromagnetic interaction. The coupling constant J values in the heterodinuclear Cu-Gd complexes are correlated to values of the dihedral angles alpha between the two O-Cu-O and O-Gd-O fragments of the bridging CuO2Gd networks, with the largest J value associated with the smallest alpha value. The occurrence of a ferromagnetic interaction between Cu(II) and Gd(III) ions of the trinuclear entity is supported by the field dependence of the magnetization. The field dependence of the magnetization at 2 K of 1.Gd and 2.Gd confirms the nature of the ground state and of the Cu(II)-Gd(III) interaction, while alternating current susceptibility measurements demonstrates out-of-phase ac susceptibility signals of 1.Tb, which is the molecule-based magnetic material of the smallest nuclearity which exhibits frequency-dependent behavior within the 3d-4f mixed-metal systems.  相似文献   

18.
The neutral rhodium(I) square-planar complexes [RhX(CO)(2)(L)] [X = Cl (3), I (4)] bearing a nitrogen-containing ligand L [diethylamine (a), triethylamine (b), imidazole (c), 1-methylimidazole (d), pyrazole (e), 1-methylpyrazole (f), 3,5-dimethylpyrazole (g)] are straightforwardly obtained from L and [Rh(μ-X)(CO)(2)](2) [X = Cl (1), I (2)] precursors. The synthesis is extended to the diethylsulfide ligand h for 3h and 4h. According to the CO stretching frequency of 3 and 4, the ranking of the electronic density on the rhodium center follows the order b > a ≈ d > c > g > f ≈ h > e. The X-ray molecular structures of 3a, 3d-3f, 4a, and 4d-4f were determined. Results from variable-temperature (1)H and (13)C{(1)H} NMR experiments suggest a fluxional associative ligand exchange for 4c-4h and a supplementary hydrogen-exchange process in 4e and 4g. The oxidative addition reaction of CH(3)I to complexes 4c-4g affords the neutral dimeric iodo-bridged acetylrhodium(III) complexes [RhI(μ-I)(COCH(3))(CO)(L)](2) (6c-6g) in very good isolated yields, whereas 4a gives a mixture of neutral 6a and dianionic [RhI(2)(μ-I)(COCH(3))(CO)][NHMeEt(2)](2) and 4h exclusively provides the analogue dianionic complex with [SMeEt(2)](+) as the counterion. X-ray molecular structures for 6d(2) and 6e reveal that the two apical CO ligands are in mutual cis positions, as are the two apical d and e ligands, whereas isomer 6d(1) is centrosymmetric. Further reactions of 6d and 6e with CO or ligand e gave quantitatively the monomeric complexes [RhI(2)(COCH(3))(CO)(2)(d)] (7d) and [RhI(2)(COCH(3))(CO)(e)(2)] (8e), respectively, as confirmed by their X-ray structures. The initial rate of CH(3)I oxidative addition to 4 as determined by IR monitoring is dependent on the nature of the nitrogen-containing ligand. For 4a and 4h, reaction rates similar to those of the well-known rhodium anionic [RhI(2)(CO)(2)](-) species are observed and are consistent with the formation of this intermediate species through methylation of the a and h ligands. The reaction rates are reduced significantly when using imidazole and pyrazole ligands and involve the direct oxidative addition of CH(3)I to the neutral complexes 4c-4g. Complexes 4c and 4d react around 5-10 times faster than 4e-4g mainly because of electronic effects. The lowest reactivity of 4f toward CH(3)I is attributed to the steric effect of the coordinated ligand, as supported by the X-ray structure.  相似文献   

19.
The synthesis and characterization of six novel mononuclear Mn(II) and Mn(III) complexes are presented. The tripodal ligands 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (HL1), 2-[[((6-methylpyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino]methyl]-4-nitrophenol (HL2), (2-pyridylmethyl)(6-methyl-2-pyridylmethyl)(2-hydroxybenzyl)amine (HL3) and 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-bromophenol were used. All ligands provide an N3O donor set. The compounds [Mn(II)(HL1)Cl2].CH3OH (1), [Mn(III)(L1)Cl2] (2), [Mn(II)(HL2)(EtOH)Cl2] (3), [Mn(II)(HL3)Cl2].CH3OH (4), [Mn(III)(HL4)Br2] (5) and [Mn(III)(L1)(tcc)] (6), with tcc = tetrachlorocatecholate dianion, were synthesized and characterized by various techniques such as X-ray crystallography, mass spectrometry, IR and UV-vis spectroscopy, cyclic voltammetry, and elemental analysis. Compound 1 crystallizes in the triclinic space group P1, compounds 2, 3 and 4 were solved in the monoclinic space group P2(1)/c, whereas the structure determination of and succeeded in the orthorhombic space groups Pbca and P2(1)2(1)2(1), respectively. Notably, the crystal structures of 1 and 3 are the first Mn(II) complexes featuring a non-coordinating phenol moiety. Compound 2 oxidizes 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations with a turnover number of kcat = 173 h(-1). The electronic influence of different substituents in para position of the phenol group is lined out.  相似文献   

20.
To obtain structural and spectroscopic models for the diiron(II,III) centers in the active sites of diiron enzymes, the (μ-alkoxo)(μ-carboxylato)diiron(II,III) complexes [Fe(II)Fe(III)(N-Et-HPTB)(O(2)CPh)(NCCH(3))(2)](ClO(4))(3) (1) and [Fe(II)Fe(III)(N-Et-HPTB)(O(2)CPh)(Cl)(HOCH(3))](ClO(4))(2) (2) (N-Et-HPTB = N,N,N',N'-tetrakis(2-(1-ethyl-benzimidazolylmethyl))-2-hydroxy-1,3-diaminopropane) have been prepared and characterized by X-ray crystallography, UV-visible absorption, EPR, and M?ssbauer spectroscopies. Fe1-Fe2 separations are 3.60 and 3.63 ?, and Fe1-O1-Fe2 bond angles are 128.0° and 129.4° for 1 and 2, respectively. M?ssbauer and EPR studies of 1 show that the Fe(III) (S(A) = 5/2) and Fe(II) (S(B) = 2) sites are antiferromagnetically coupled to yield a ground state with S = 1/2 (g= 1.75, 1.88, 1.96); M?ssbauer analysis of solid 1 yields J = 22.5 ± 2 cm(-1) for the exchange coupling constant (H = JS(A)·S(B) convention). In addition to the S = 1/2 ground-state spectrum of 1, the EPR signal for the S = 3/2 excited state of the spin ladder can also be observed, the first time such a signal has been detected for an antiferromagnetically coupled diiron(II,III) complex. The anisotropy of the (57)Fe magnetic hyperfine interactions at the Fe(III) site is larger than normally observed in mononuclear complexes and arises from admixing S > 1/2 excited states into the S = 1/2 ground state by zero-field splittings at the two Fe sites. Analysis of the "D/J" mixing has allowed us to extract the zero-field splitting parameters, local g values, and magnetic hyperfine structural parameters for the individual Fe sites. The methodology developed and followed in this analysis is presented in detail. The spin Hamiltonian parameters of 1 are related to the molecular structure with the help of DFT calculations. Contrary to what was assumed in previous studies, our analysis demonstrates that the deviations of the g values from the free electron value (g = 2) for the antiferromagnetically coupled diiron(II,III) core in complex 1 are predominantly determined by the anisotropy of the effective g values of the ferrous ion and only to a lesser extent by the admixture of excited states into ground-state ZFS terms (D/J mixing). The results for 1 are discussed in the context of the data available for diiron(II,III) clusters in proteins and synthetic diiron(II,III) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号