首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The injection of supercritical CO2 in deep saline aquifers leads to the formation of a CO2 plume that tends to float above the formation brine. As pressure builds up, CO2 properties, i.e. density and viscosity, can vary significantly. Current analytical solutions do not account for CO2 compressibility. In this article, we investigate numerically and analytically the effect of this variability on the position of the interface between the CO2-rich phase and the formation brine. We introduce a correction to account for CO2 compressibility (density variations) and viscosity variations in current analytical solutions. We find that the error in the interface position caused by neglecting CO2 compressibility is relatively small when viscous forces dominate. However, it can become significant when gravity forces dominate, which is likely to occur at late times of injection.  相似文献   

2.
CO2 injected into porous formations is accommodated by reduction in the volume of the formation fluid and enlargement of the pore space, through compression of the formation fluids and rock material, respectively. A critical issue is how the resulting pressure buildup will affect the mechanical integrity of the host formation and caprock. Building on an existing approximate solution for formations of infinite radial extent, this article presents an explicit approximate solution for estimating pressure buildup due to injection of CO2 into closed brine aquifers of finite radial extent. The analysis is also applicable for injection into a formation containing multiple wells, in which each well acts as if it were in a quasi-circular closed region. The approximate solution is validated by comparison with vertically averaged results obtained using TOUGH2 with ECO2N (where many of the simplifying assumptions are relaxed), and is shown to be very accurate over wide ranges of the relevant parameter space. The resulting equations for the pressure distribution are explicit, and can be easily implemented within spreadsheet software for estimating CO2 injection capacity.  相似文献   

3.
For deep injection of CO2 in thick saline formations, the movements of both the free gas phase and dissolved CO2 are sensitive to variations in vertical permeability. A simple model for vertical heterogeneity was studied, consisting of a random distribution of horizontal impermeable barriers with a given overall volume fraction and distribution of lengths. Analytical results were obtained for the distribution of values for the permeability, and compared to numerical simulations of deep CO2 injection and convection in heterogeneous formations, using multiple realizations for the permeability distribution. It is shown that for a formation of thickness H, the breakthrough times in two dimensions for deep injection scale as H 2 for moderate injection rates. In comparison to heterogeneous shale distributions, a homogeneous medium with equivalent effective vertical permeability has a longer breakthrough time for deep injection, and a longer onset time for convection.  相似文献   

4.
Injection of fluids into deep saline aquifers is practiced in several industrial activities, and is being considered as part of a possible mitigation strategy to reduce anthropogenic emissions of carbon dioxide into the atmosphere. Injection of CO2 into deep saline aquifers involves CO2 as a supercritical fluid that is less dense and less viscous than the resident formation water. These fluid properties lead to gravity override and possible viscous fingering. With relatively mild assumptions regarding fluid properties and displacement patterns, an analytical solution may be derived to describe the space–time evolution of the CO2 plume. The solution uses arguments of energy minimization, and reduces to a simple radial form of the Buckley–Leverett solution for conditions of viscous domination. In order to test the applicability of the analytical solution to the CO2 injection problem, we consider a wide range of subsurface conditions, characteristic of sedimentary basins around the world, that are expected to apply to possible CO2 injection scenarios. For comparison, we run numerical simulations with an industry standard simulator, and show that the new analytical solution matches a full numerical solution for the entire range of CO2 injection scenarios considered. The analytical solution provides a tool to estimate practical quantities associated with CO2 injection, including maximum spatial extent of a plume and the shape of the overriding less-dense CO2 front.  相似文献   

5.
Dissolution of CO2 into brine is an important and favorable trapping mechanism for geologic storage of CO2. There are scenarios, however, where dissolved CO2 may migrate out of the storage reservoir. Under these conditions, CO2 will exsolve from solution during depressurization of the brine, leading to the formation of separate phase CO2. For example, a CO2 sequestration system with a brine-permeable caprock may be favored to allow for pressure relief in the sequestration reservoir. In this case, CO2-rich brine may be transported upwards along a pressure gradient caused by CO2 injection. Here we conduct an experimental study of CO2 exsolution to observe the behavior of exsolved gas under a wide range of depressurization. Exsolution experiments in highly permeable Berea sandstones and low permeability Mount Simon sandstones are presented. Using X-ray CT scanning, the evolution of gas phase CO2 and its spatial distribution is observed. In addition, we measure relative permeability for exsolved CO2 and water in sandstone rocks based on mass balances and continuous observation of the pressure drop across the core from 12.41 to 2.76 MPa. The results show that the minimum CO2 saturation at which the exsolved CO2 phase mobilization occurs is from 11.7 to 15.5%. Exsolved CO2 is distributed uniformly in homogeneous rock samples with no statistical correlation between porosity and CO2 saturation observed. No gravitational redistribution of exsolved CO2 was observed after depressurization, even in the high permeability core. Significant differences exist between the exsolved CO2 and water relative permeabilities, compared to relative permeabilities derived from steady-state drainage relative permeability measurements in the same cores. Specifically, very low CO2 and water relative permeabilities are measured in the exsolution experiments, even when the CO2 saturation is as high as 40%. The large relative permeability reduction in both the water and CO2 phases is hypothesized to result from the presence of disconnected gas bubbles in this two-phase flow system. This feature is also thought to be favorable for storage security after CO2 injection.  相似文献   

6.
Mitigation and control of borehole pressure at the bottom of an injection well is directly related to the effective management of well injectivity during geologic carbon sequestration activity. Researchers have generally accepted the idea that high rates of CO2 injection into low permeability strata results in increased bottom-hole pressure in a well. However, the results of this study suggested that this is not always the case, due to the occurrence of localized salt precipitation adjacent to the injection well. A series of numerical simulations indicated that in some cases, a low rate of CO2 injection into high permeability formation induced greater pressure build-up. This occurred because of the different types of salt precipitation pattern controlled by buoyancy-driven CO2 plume migration. The first type is non-localized salt precipitation, which is characterized by uniform salt precipitation within the dry-out zone. The second type, localized salt precipitation, is characterized by an abnormally high level of salt precipitation at the dry-out front. This localized salt precipitation acts as a barrier that hampers the propagation of both CO2 and pressure to the far field as well as counter-flowing brine migration toward the injection well. These dynamic processes caused a drastic pressure build-up in the well, which decreased injectivity. By modeling a series of test cases, it was found that low-rate CO2 injection into high permeability formation was likely to cause localized salt precipitation. Sensitivity studies revealed that brine salinity linearly affected the level of salt precipitation, and that vertical permeability enhanced the buoyancy effect which increased the growth of the salt barrier. The porosity also affected both the level of localized salt precipitation and dry-out zone extension depending on injection rates. High temperature injected CO2 promoted the vertical movement of the CO2 plume, which accelerated localized salt precipitation, but at the same time caused a decrease in the density of the injected CO2. The combination of these two effects eventually decreased bottomhole pressure. Considering the injectivity degradation, a method is proposed for decreasing the pressure build-up and increasing injectivity by assigning a ‘skin zone’ that represents a local region with a transmissivity different from that of the surrounding aquifer.  相似文献   

7.
Although there are a number of mathematical modeling studies for carbon dioxide (CO2) injection into aquifer formations, experimental studies are limited and most studies focus on injection into sandstone reservoirs as opposed to carbonate ones. This study presents the results of computerized tomography (CT) monitored laboratory experiments to analyze permeability and porosity changes as well as to characterize relevant chemical reactions associated with injection and storage of CO2 in carbonate formations. CT monitored experiments are designed to model fast near well bore flow and slow reservoir flows. Highly heterogeneous cores drilled from a carbonate aquifer formation located in South East Turkey were used during the experiments. Porosity changes along the core plugs and the corresponding permeability changes are reported for different CO2 injection rates and different salt concentrations of formation water. It was observed that either a permeability increase or a permeability reduction can be obtained. The trend of change in rock properties is very case dependent because it is related to distribution of pores, brine composition and thermodynamic conditions. As the salt concentration decreases, porosity and the permeability decreases are less pronounced. Calcite deposition is mainly influenced by orientation, with horizontal flow resulting in larger calcite deposition compared to vertical flow.  相似文献   

8.
According to the research theory of improved black oil simulator, a practical mathematical model for C02 miscible flooding was presented. In the model, the miscible process simulation was realized by adjusting oil/gas relative permeability and effective viscosity under the condition of miscible flow. In order to predict the production performance fast, streamline method is employed to solve this model as an alternative to traditional finite difference methods. Based on streamline distribution of steady-state flow through porous media with complex boundary confirmed with the boundary element method (BEM), an explicit total variation diminishing (TVD) method is used to solve the one-dimensional flow problem. At the same time, influences of development scheme, solvent slug size, and injection periods on CO2 drive recovery are discussed. The model has the advantages of less information need, fast calculation, and adaptation to calculate CO2 drive performance of all kinds of patterns in a random shaped porous media with assembly boundary. It can be an effective tool for early stage screening andmiscible oil field.reservoir dynamic management of the CO2 miscible oil field.  相似文献   

9.
Simulations of CO2 injection into confined saline aquifers were conducted for both vertical and horizontal injection wells. The metrics used in quantifying the performances of different injection scenarios included changes in pressure near the injection well, mass of CO2 dissolved into brine (solubility trapping), and storage efficiency, all evaluated with an assumed injection period of 50 years. Metrics were quantified as functions of well length, well orientation, CO2 injection rate, and formation anisotropy (ratio of vertical to horizontal conductivity). When equal well lengths are compared, there is not a significant difference between the predicted performances of horizontal and vertical wells. However, the length of a horizontal well may exceed the length of a vertical well because the length of the horizontal well is not constrained to the vertical thickness of the geologic formation. Simulations show that, as the length of the horizontal well is allowed to increase, the geologic formation can receive a significantly higher CO2 injection rate without exceeding a maximum allowable pressure. This result is observed in both isotropic and anisotropic formations, and suggests that horizontal wells may be advantageous under pressure-limited conditions. However, the use of horizontal wells does not significantly improve the storage efficiency, and under strongly anisotropic conditions, a vertical well provides higher storage efficiency than a horizontal well. We conclude that horizontal wells may be preferable if the goal is to sequester a large amount of CO2 in a short period of time, but do not offer a significant advantage in terms of long-term capacity of a potential repository.  相似文献   

10.
The weakened Hilberts 16th problem for symmetric planar perturbed polynomial Hamiltonian systems is considered. An example of Z8-equivariant planar perturbed Hamiltonian systems is constructed. By using bifurcation theory of planar dynamical systems and the method of detection functions, under the help of numerical analysis, it is shown that there exist parameter groups such that this perturbed Hamiltonian polynomial vector field of degree 7 has at least72=49 limit cycles with Z8 symmetry. It also gives rise to different configurations of limit cycles forming compound eyes.Dedicated to Professor Shui-Nee Chow on the occasion of his 60th birthday.  相似文献   

11.
We used the multiphase and multicomponent TOUGH2/EOS7CA model to carry out predictive simulations of CO2 injection into the shallow subsurface of an agricultural field in Bozeman, Montana. The purpose of the simulations was to inform the choice of CO2 injection rate and design of monitoring and detection activities for a CO2 release experiment. The release experiment configuration consists of a long horizontal well (70 m) installed at a depth of approximately 2.5 m into which CO2 is injected to mimic leakage from a geologic carbon sequestration site through a linear feature such as a fault. We estimated the permeability of the soil and cobble layers present at the site by manual inversion of measurements of soil CO2 flux from a vertical-well CO2 release. Based on these estimated permeability values, predictive simulations for the horizontal well showed that CO2 injection just below the water table creates an effective gas-flow pathway through the saturated zone up to the unsaturated zone. Once in the unsaturated zone, CO2 spreads out laterally within the cobble layer, where liquid saturation is relatively low. CO2 also migrates upward into the soil layer through the capillary barrier and seeps out at the ground surface. The simulations predicted a breakthrough time of approximately two days for the 100kg d−1 injection rate, which also produced a flux within the range desired for testing detection and monitoring approaches. The seepage area produced by the model was approximately five meters wide above the horizontal well, compatible with the detection and monitoring methods tested. For a given flow rate, gas-phase diffusion of CO2 tends to dominate over advection near the ground surface, where the CO2 concentration gradient is large, while advection dominates deeper in the system.  相似文献   

12.
This article presents a numerical modeling application using the code TOUGHREACT of a leakage scenario occurring during a CO2 geological storage performed in the Jurassic Dogger formation in the Paris Basin. This geological formation has been intensively used for geothermal purposes and is now under consideration as a site for the French national program of reducing greenhouse gas emissions and CO2 geological storage. Albian sandstone, situated above the Dogger limestone is a major strategic potable water aquifer; the impacts of leaking CO2 due to potential integrity failure have, therefore, to be investigated. The present case–study illustrates both the capacity and the limitations of numerical tools to address such a critical issue. The physical and chemical processes simulated in this study have been restricted to: (i) supercritical CO2 injection and storage within the Dogger reservoir aquifer, (ii) CO2 upwards migration through the leakage zone represented as a 1D vertical porous medium to simulate the cement–rock formation interface in the abandoned well, and (iii) impacts on the Albian aquifer water quality in terms of chemical composition and the mineral phases representative of the porous rock by estimating fluid–rock interactions in both aquifers. Because of CPU time and memory constraints, approximation and simplification regarding the geometry of the geological structure, the mineralogical assemblages and the injection period (up to 5 years) have been applied to the system, resulting in limited analysis of the estimated impacts. The CO2 migration rate and the quantity of CO2 arriving as free gas and dissolving, firstly in the storage water and secondly in the water of the overlying aquifer, are calculated. CO2 dissolution into the Dogger aquifer induces a pH drop from about 7.3 to 4.9 limited by calcite dissolution buffering. Glauconite present in the Albian aquifer also dissolves, causing an increase of the silicon and aluminum in solution and triggering the precipitation of kaolinite and quartz around the intrusion point. A sensitivity analysis of the leakage rate according to the location of the leaky well and the variability of the petro-physical properties of the reservoir, the leaky well zone and the Albian aquifers is also provided.  相似文献   

13.
Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected buoyant CO2 accumulates at the top part of the aquifer under a sealing cap rock. Potential buoyant movement of CO2 has caused some concern that the high-pressure CO2 could breach the seal rock. However, CO2 will diffuse into the brine underneath and generate a slightly denser fluid that may induce instability and convective mixing. Onset times of instability and convective mixing performance depend on the physical properties of the rock and fluids, such as permeability and density contrast. We present the novel idea of adding nanoparticles (NPs) to injected CO2 to increase density contrast between the CO2-rich brine and the underlying resident brine and, consequently, decrease onset time of instability and increase convective mixing. The analyses show that 0.001 volume fraction of NPs added to the CO2 stream shortens onset time of mixing by approximately 80% and increases convective mixing by 50%. If it thus originally takes 5 years for the overlying CO2 to start convective mixing, by adding NPs, onset time of mixing reduces to 1 year, and after initiation of convective mixing, mixing improves by 50%. A reduction of the CO2 leakage risk ensues. In addition to other metallic NPs, use of processed depleted uranium oxide (DU) as the NPs is also proposed. DU-NPs are potentially stable and might be safely commingled with CO2 to store in saline aquifers.  相似文献   

14.
The electrorheological properties (ER) of some fluids containing particles change extensively under the external electrical field. This phenomenon is applicable in many industries and equipments, such as clutches and motor driven rotor, which would transfer the spin to a drive shaft through a thin layer of electrorheological fluid. In this investigation, the effects of external electrical field on ER properties of non-Newtonian fluids (silicon oil) with the addition of SnO2 and Y2O3 nanoparticles were studied. The ER properties were measured for a wide range of SnO2 and Y2O3 nanoparticle concentrations and DC electrical voltages using concentric cylinder rotary rheometer. Based on the results, ER properties of nanofluids, e.g., apparent viscosity, shear stress, and yield stress, were enhanced by applying electrical field and increasing SnO2 and Y2O3 concentrations.
S. Gh. EtemadEmail:
  相似文献   

15.
We study the thermal buckling of a simply supported sigmoid functionally graded (SFGM) rectangular plate using first-order shear deformation theory. The S-FGM system consists of ceramic (Al2O3) and metal (Al) phases varying across the plate thickness according to a law described by two power-law functions. The effective properties of the composite are determined by the rule of mixtures, whose implementation is simpler than that of methods of micromechanics. The thermal heating is characterized by a uniform, linear, or sinusoidal temperature distribution across the plate thickness. The effects of the plate aspect ratio, the relative thickness, the gradient index, and the transverse shear on the buckling temperature difference are studied.  相似文献   

16.
The primary purpose of this study is to understand quantitative characteristics of mobile, residual, and dissolved CO2 trapping mechanisms within ranges of systematic variations in different geologic and hydrologic parameters. For this purpose, we conducted an extensive suite of numerical simulations to evaluate the sensitivities included in these parameters. We generated two-dimensional numerical models representing subsurface porous media with various permutations of vertical and horizontal permeability (k v and k h), porosity (f{\phi}), maximum residual CO2 saturation (Sgrmax{S_{\rm gr}^{\max}}), and brine density (ρ br). Simulation results indicate that residual CO2 trapping increases proportionally to kv, kh, Sgrmax{k_{\rm v}, k_{\rm h}, S_{\rm gr}^{\max}} and ρ br but is inversely proportional to f.{\phi.} In addition, the amount of dissolution-trapped CO2 increases with k v and k h, but does not vary with f{\phi } , and decreases with Sgrmax{S_{\rm gr}^{\max}} and ρ br. Additionally, the distance of buoyancy-driven CO2 migration increases proportionally to k v and ρ br only and is inversely proportional to kh, f{k_{\rm h}, \phi } , and Sgrmax{S_{\rm gr}^{\max}} . These complex behaviors occur because the chosen sensitivity parameters perturb the distances of vertical and horizontal CO2 plume migration, pore volume size, and fraction of trapped CO2 in both pores and formation fluids. Finally, in an effort to characterize complex relationships among residual CO2 trapping and buoyancy-driven CO2 migration, we quantified three characteristic zones. Zone I, expressing the variations of Sgrmax{S_{\rm gr}^{\max}} and k h, represents the optimized conditions for geologic CO2 sequestration. Zone II, showing the variation of f{\phi} , would be preferred for secure CO2 sequestration since CO2 has less potential to escape from the target formation. In zone III, both residual CO2 trapping and buoyancy-driven migration distance increase with k v and ρ br.  相似文献   

17.
This work describes essential aspects of the ignition and deflagration process initiated by the injection of a hot transient gas jet into a narrowly confined volume containing air-CH4-H2 mixture. Driven by the pressure difference between a prechamber and a long narrow constant-volume-combustion (CVC) chamber, the developing jet or puff involves complex processes of turbulent jet penetration and evolution of multi-scale vortices in the shear layer, jet tip, and adjacent confined spaces. The CVC chamber contains stoichiometric mixtures of air with gaseous fuel initially at atmospheric conditions. Fuel reactivity is varied using two different CH4/H2 blends. Jet momentum is varied using different pre-chamber pressures at jet initiation. The jet initiation and the subsequent ignition events generate pressure waves that interact with the mixing region and the propagating flame, depositing baroclinic vorticity. Transient three-dimensional flow simulations with detailed chemical kinetics are used to model CVC mixture ignition. Pre-ignition gas properties are then examined to develop and verify criteria to predict ignition delay time using lower-cost non-reacting flow simulations for this particular case of study.  相似文献   

18.
In this paper, a non-isobaric Marangoni boundary layer flow that can be formed along the interface of immiscible nanofluids in surface driven flows due to an imposed temperature gradient, is considered. The solution is determined using a similarity solution for both the momentum and energy equations and assuming developing boundary layer flow along the interface of the immiscible nanofluids. The resulting system of nonlinear ordinary differential equations is solved numerically using the shooting method along with the Runge-Kutta-Fehlberg method. Numerical results are obtained for the interface velocity, the surface temperature gradient as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ (0≤φ≤0.2) and the constant exponent β. Three different types of nanoparticles, namely Cu, Al2O3 and TiO2 are considered by using water-based fluid with Prandtl number Pr =6.2. It was found that nanoparticles with low thermal conductivity, TiO2, have better enhancement on heat transfer compared to Al2O3 and Cu. The results also indicate that dual solutions exist when β<0.5. The paper complements also the work by Golia and Viviani (Meccanica 21:200–204, 1986) concerning the dual solutions in the case of adverse pressure gradient.  相似文献   

19.
Nylon-6 is an important engineering polymer that, in its fully spherulitic (bulk) form, has many applications in gears, rollers, and other long life cycle components. In 1993, Toyota commercialized a nylon-6/clay nanocomposite out of which it produced the timing belt cover for the Camry. Although these hybrid nanocomposites show significant improvements in their mechanical response characteristics, including yield strength and heat distortion temperature, little is known about the degradation of these properties due to environmental pollutants like NO x . Nylon-6 fibers are severely degraded by interaction with NO x and other pollutants, showing a strong synergy between applied load and environmental degradation. While the nanocomposites show a significant reduction in permeability of gases and water due to the incorporation of lamellar clay, their susceptibility to nondiffusional mechano-chemical degradation is unknown. The fracture toughness of these nylon-6/clay nanocomposites increases, not as a function of clay content, but as a function of the volume of nylon-6 polymer chains influenced by the clay lamellae surfaces. Both the clay and the constrained volume offer the nanocomposites some protection from the deleterious effects of NO x . The time-to-failure at a given stress intensity factor as a function of clay content and constrained volume is discussed along with fracture toughness of the materials.  相似文献   

20.
The properties and microstructure of an Al/(Al2O3 + TiB2 + ZrB2) hybrid composite made by using hot pressing of aluminum combined with different amounts of TiB2, ZrB2, and Al2O3 powders are studied. The mechanical properties of the composites are investigated on the basis of microhardness and compression tests. The results show that the microstructure of the composites is uniform and the particles are well distributed in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号