首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(E)-beta-aryl vinyl iodides are synthesized in high yield with excellent stereoselectivity from benzyl bromides by a one-pot homologation/stereoselective elimination procedure. Convenient conditions involving the anion of diiodomethane and an excess of base provide complete consumption of the benzyl bromide and elimination from a diiodoalkane intermediate. Similar conditions provide (E)-beta-aryl vinyl chlorides and bromides by employing the anions of ICH(2)Cl or CH(2)Br(2). The functional group tolerance and facile purification allows rapid access to a wide range of functionalized vinyl halides.  相似文献   

2.
The reductive elimination of carbon-carbon bonds is one of the most fundamentally and synthetically important reaction steps in organometallic chemistry, yet relatively little is understood about the factors that govern the kinetics of this reaction. C-C elimination from complexes with the common d (6) six-coordinate configuration generally proceeds via prior ligand loss, which greatly complicates any attempt to directly measure the rates of the specific elimination step. We report the synthesis of a series of five-coordinate d (6) iridium complexes, ( (tBu)PCP)Ir(R)(R'), where R and R' are Me, Ph, and (phenyl-substituted) vinyl and alkynyl groups. For several of these complexes (R/R' = Ph/Vi, Me/Me, Me/Vi, Me/CCPh, and Vi/CCPh, where Vi = trans-CHCHPh) we have measured the absolute rate of C-C elimination. For R/R' = Ph/Ph, Ph/Me, and Ph/CCPh, we obtain upper limits to the elimination rate; and for R/R' = CCPh/CCPh, a lower limit. In general, the rates decrease (activation barriers increase) according to the following order: acetylide < vinyl approximately Me < Ph. Density functional theory (DFT) calculations offer significant insight into the factors behind this order, in particular the slow rates for elimination of the vinyl and, especially, phenyl complexes. The transition states are calculated to involve rotation of the aryl or vinyl group around the Ir-C bond, prior to C-C elimination, such that the group to which it couples can add to the face of the aryl or vinyl group. This rotation is severely hindered by the presence of the phosphino -t-butyl groups that lie above and below the plane of the aryl/vinyl group in the ground state. Accordingly, calculations predict dramatically different relative rates of elimination from the much less sterically hindered complexes ( (H)PCP)Ir(R)(R'). For example, the barrier to elimination from ( (H)PCP)Ir(Me) 2 is 20 kcal/mol, which is 2 kcal/mol greater than from the ( (tBu)PCP)Ir analogue. In contrast, the activation enthalpies calculated for vinyl-vinyl and phenyl-phenyl elimination from ( (H)PCP)Ir are remarkably low, only 2 and 9 kcal/mol, respectively; these values are 16 and 22 kcal/mol less than those of the corresponding ( (tBu)PCP)Ir complexes. Moreover, since these eliminations are very nearly thermoneutral, the barriers are calculated to be equally low for the reverse reactions [C-C oxidative addition to ( (H)PCP)Ir]. The absence of differences in intraligand CC bond lengths in the transition states relative to the ground states, combined with a comparison of calculated "face-on" and "planar" transition states for C-C coupling, suggests that the critical importance of the aryl/vinyl rotation is based on geometric or steric factors rather than electronic ones. Thus there is no evidence for participation of the pi or pi* orbitals of the aryl or vinyl groups in the formation of the C-C bond, although a small pi effect cannot be rigorously excluded. Likewise, the results do not support the hypothesis that the degree of directionality of the carbon-based orbital used for bonding to iridium (sp (3) > sp (2) > sp) plays an important role in this system in determining the barrier to reductive elimination.  相似文献   

3.
A synthesis of vicinal diamines via in situ aminal formation and carboamination of allyl amines is reported. Employing highly electron‐poor trifluoromethyl aldimines in their stable hemiaminal form was key to enable both a fast and complete aminal formation as well as the palladium‐catalyzed carboamination step. The conditions developed allow the introduction of a wide variety of alkynyl, vinyl, aryl, and hetereoaryl groups with complete regioselectivity and high diastereoselectivity. The reaction exhibits a high functional‐group tolerance. Importantly, either nitrogen atom of the imidazolidine products can be selectively deprotected, while removal of the aminal tether can be achieved in a single step under mild conditions to reveal the free diamine. We expect that this work will promote the further use of mixed aminal tethers in organic synthesis.  相似文献   

4.
We describe the utilization of four kinds of diol derivatives, representing structural similarity to the well‐known and commercially available vinyl monomers such as acrylate, acrylamide, styrene, and N‐substituted maleimide. The vinyl monomers are readily converted by dihydroxylation reaction to afford the vicinal diol. The synthesis of poly(urethane)s was performed by the reaction of the vicinal diol with two model diisocyanates, including methylene diphenyl isocyanate (MDI) and hexamethylene diisocyanate (HDI) in the presence of dibutyltin dilaurate to form a series of poly(urethane)s, and the effect of vicinal diol containing a side chain inherited from vinyl monomers on their thermal and mechanical properties was investigated using thermogravimetric analysis, differential scanning calorimetry, and tensile test. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 799–805  相似文献   

5.
The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 °C. Standard rheograms using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (ns) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition.  相似文献   

6.
The pincer-ligated species (PCP)Ir (PCP = kappa3-C6H3-2,6-(CH2PtBu2)2) is found to promote dimerization of phenylacetylene to give the enyne complex (PCP)Ir(trans-1,4-phenyl-but-3-ene-1-yne). The mechanism of this reaction is found to proceed through three steps: (i) addition of the alkynyl C-H bond to iridium, (ii) insertion of a second phenylacetylene molecule into the resulting Ir-H bond, and (iii) vinyl-acetylide reductive elimination. Each of these steps has been investigated, by both experimental and computational (DFT) methods, to yield unexpected conclusions of general interest. (i) The product of alkynyl C-H addition, (PCP)Ir(CCPh)(H) (3), has been isolated and, in accord with experimental observations, is calculated to be 29 kcal/mol more stable than the analogous product of benzene C-H addition. (ii) Insertion of a second PhCCH molecule into the Ir-H bond of 3 proceeds rapidly, but with a 1,2-orientation. This orientation gives (PCP)Ir(CCPh)(CPh=CH2) (4) which would yield the 1,3-diphenyl-enyne if it were to undergo C-C elimination; however, the insertion is reversible, which represents the first example, to our knowledge, of simple beta-H elimination from a vinyl group to give a terminal hydride. The 2,1-insertion product (PCP)Ir(CCPh)(CH=CHPh) (6) forms more slowly, but unlike the 1,2 insertion product it undergoes C-C elimination to give the observed enyne. (iii) The failure of 4 to undergo C-C elimination is found to be general for (PCP)Ir(CCPh)(vinyl) complexes in which the vinyl group has an alpha-substituent. Thus, although C-C elimination relieves crowding, the reaction is inhibited by increased crowding. Density-functional theory (DFT) calculations support this surprising conclusion and offer a clear explanation. Alkynyl-vinyl bond formation in the C-C elimination transition state involves the vinyl group pi-system; this requires that the vinyl group must rotate (around the Ir-C bond) by ca. 90 degrees to achieve an appropriate orientation. This rotation is severely inhibited by steric crowding, particularly when the vinyl group bears an alpha-substituent.  相似文献   

7.
The mechanism of the gas‐phase elimination kinetics of 2‐ethoxypyridine has been studied through the electronic structure calculations using density functional methods: B3LYP/6‐31G(d,p), B3LYP/6‐31++G(d,p), B3PW91/6‐31G(d,p), B3PW91/6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), PBEPBE/6‐31++G(d,p), PBE1PBE1/6‐31G(d,p), and PBE1PBE1/6‐31++G(d,p). The elimination reaction of 2‐ethoxypyridine occurs through a six‐centered transition state geometry involving the pyridine nitrogen, the substituted carbon of the aromatic ring, the ethoxy oxygen, two carbons of the ethoxy group, and a hydrogen atom, which migrates from the ethoxy group to the nitrogen to give 2‐pyridone and ethylene. The reaction mechanism appears to occur with the participation of π‐electrons, similar to alkyl vinyl ether elimination reaction, with simultaneous ethylene formation and hydrogen migration to the pyridine nitrogen producing 2‐pyridone. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
刘湘  潘争光  许建和 《化学进展》2011,23(5):903-913
具有特定功能基团的手性芳基邻二醇是许多具有特殊功能的药物、农药和信息素的重要中间体,近年来手性芳基邻二醇类化合物的合成与应用研究引起了人们的广泛关注。本文从生物催化不对称合成和化学催化不对称合成两方面综述了近年来手性芳基邻二醇的合成进展,概述了前手性底物上取代基的电子效应和空间效应、手性催化剂的种类和反应体系等因素对合成手性芳基邻二醇产率及光学活性的影响,并对手性芳基邻二醇不对称合成的发展趋势进行了展望。  相似文献   

9.
A cross‐coupling reaction between enol derivatives and silyl ketene acetals catalyzed by GaBr3 took place to give the corresponding α‐alkenyl esters. GaBr3 showed the most effective catalytic ability, whereas other metal salts such as BF3?OEt2, AlCl3, PdCl2, and lanthanide triflates were not effective. Various types of enol ethers and vinyl carboxylates as enol derivatives are amenable to this coupling. The scope of the reaction with silyl ketene acetals was also broad. We successfully observed an alkylgallium intermediate by using NMR spectroscopy, suggesting a mechanism involving anti‐carbogallation among GaBr3, an enol derivative, and a silyl ketene acetal, followed by syn‐β‐alkoxy elimination from the alkylgallium. Based on kinetic studies, the turnover‐limiting step of the reaction using a vinyl ether and a vinyl carboxylate involved syn‐β‐alkoxy elimination and anti‐carbogallation, respectively. Therefore, the leaving group had a significant effect on the progress of the reaction. Theoretical calculations analysis suggest that the moderate Lewis acidity of gallium would contribute to a flexible conformational change of the alkylgallium intermediate and to the cleavage of the carbon?oxygen bond in the β‐alkoxy elimination process, which is the turnover‐limiting step in the reaction between a vinyl ether and a silyl ketene acetal.  相似文献   

10.
The 1,3-dipolar cycloaddition of diazomethylsulfone anion, generated in situ from α-diazo-β-ketosulfone, with vinyl sulfone proceeds in a regioselective manner to provide sulfonylpyrazoles. Similar reaction of diazomethylphosphonate anion, derived from Bestmann–Ohira reagent, with vinyl sulfone leads to phosphonylpyrazoles. The sulfonyl group of vinyl sulfone undergoes chemoselective elimination in these reactions.  相似文献   

11.
Novel mono‐ and multifunctional vinyl ester monomers containing thioether groups were synthesized via an amine‐catalyzed Michael addition reaction between vinyl acrylate and multifunctional thiols. Using photo‐differential scanning calorimetry and real‐time Fourier transform infrared (RTIR) spectroscopy, the polymerization kinetics and oxygen inhibition of the homopolymerizations of the vinyl ester monomers were investigated. The effect of the vinyl ester and thioether group on acrylate/vinyl ester and thiol/vinyl ester copolymerizations was determined using real‐time IR spectroscopy to monitor polymerization rates of acrylate, vinyl, and thiol groups simultaneously. Polymerization of the vinyl esters used was found to be relatively insensitive to oxygen inhibition. We propose that the thioether group is responsible for reducing oxygen inhibition by a series of chain transfer/oxygen‐scavenging reactions. In polymerization of a acrylate/vinyl ester mixture both in nitrogen and in air, the vinyl ester monomer significantly enhances the polymerization rates and the conversion of the acrylate double bonds via plasticization of the crosslinked matrix and reduction of inhibition by oxygen. Ultimately, the vinyl ester monomer is incorporated into the polymer network. Thiol/vinyl ester free‐radical copolymerization is much faster than either thiol/allylether copolymerization or vinyl ester homopolymerization. The electron‐rich vinyl ester double bonds ensure rapid copolymerization with thiol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4424–4436, 2004  相似文献   

12.
After activation with electrophilic selenenylating agents, the phenylseleno group of vicinal azido selenides, containing internal oxygen or nitrogen nucleophilic substituents, readily undergoes intramolecular nucleophilic displacement to afford azido-substituted heterocyclic compounds. This intramolecular substitution occurs with inversion of configuration at the carbon atom bearing the selenium atom. Starting from acetamido selenides and carbamato selenides, a stereocontrolled synthesis of the vicinal amino alcohol precursor oxazolines and oxazolidin-2-ones has been developed.  相似文献   

13.
The extent of intramolecular hydrogen-bonding, as determined by infra-red spectroscopy in the hydroxyl stretching region, in certain vicinal diols of cyclohexane, cyclopentane, tetrahydropyran and tetrahydrofuran and in related compounds provides evidence for the stabilities of different conformations. In certain compounds these stabilities can be affected by hydrogen bonding from a substituent hydroxyl group to a ring oxygen. Additional evidence is provided in the case of the tetrahydropyran diols by [M]D values. The rate of reaction of the vicinal diols of these cyclic systems with glycol splitting reagents, and their zone electrophoretic mobility in an alkaline borate buffer is influenced by the presence of a ring oxygen.  相似文献   

14.
《Tetrahedron letters》1986,27(36):4355-4358
Vinyl sulphones (1-sulphonyl glycals) are formed in good yield by elimination of propanone from 2,3-O-isopropylidene derivatives of D-mannopyranosyl and L-rhanmopyranosyl sulphones. Attempted conjugate addition of carbon nucleophiles to these vinyl sulphones, which are deactivated towards nucleophiles by the ring oxygen atom, was unsuccessful but lithiatlon followed by methylation yielded the 2-methyl vinyl sulphone derivatives when t-butyl sulphones rather than phenyl sulphones were used.  相似文献   

15.
The 300 MHz 1H NMR spectrum of 4-vinylbutyrolactone has been recorded and analysed. The results showed that the compound is a mixture of two rapidly interconverting envelope forms in which (C-3) is the flap atom. The vinyl group favours the pseudo-equatorial orientation by 1·9 ± 0.3 kJ mol?1, as shown by the dependence of the vicinal coupling constants on temperature.  相似文献   

16.
Three ethylene/vinyl acetate copolymers (3.5, 12.0 and 18.8 mol% VA; average melt index 8.5 g/10 min) were transformed into ethylene/vinyl alcohol copolymers and ethylene/vinyl alcohol/vinyl acetate terpolymers by homogeneous saponification. The reaction rate increased with mol% VA. This feature originated in the reactivity differences beteen vicinal and isolated VA functions. Simultaneous steric and polarity effects caused the reaction rate differences. 1H-NMR, i.r., dielectric measurements and additional saponification reactions confirmed the difference of reactivity.  相似文献   

17.
Direct oxidation of enolizable ketones to α-hydroxy derivatives, vicinal dicarbonyls or tricarbonyl compounds has been achieved by a catalytic amount of 2-alkylidene-4-oxothiazolidine vinyl bromide in DMSO as a solvent. The yields range from moderate to good.  相似文献   

18.
The preparation and Claisen rearrangement of highly substituted allyl vinyl ethers is described. It is demonstrated that the thermal and anionic versions of the Claisen rearrangement are capable of creating vicinal quaternary centers.  相似文献   

19.
The reactions of methoxymethyl cations generated from dimethyl ether with propene, butene-2, vinyl methyl ether, acetaldehyde and acetone have been studied. The collision complexes, generated with the olefines, may eliminate an olefine, a methanol and a formaldehyde molecule as shown by double resonance experiments. From deuterium labelling it is found, that in the cases of propene and butene-2 the elimination of an olefine is accompanied by an extensive H/D interchange in the collision complexes, which has been shown not to occur in the long-lived reactant methoxymethyl cations if the internal energy of the methoxymethyl cations is less than 2.3 eV. The H/D interchange in these collision complexes is reduced in the elimination of methanol and is almost completely suppressed in the elimination of formaldehyde. In reactions with vinyl methyl ether, however, the eliminations of methanol and formaldehyde from the corresponding collision complexes appear to proceed with extensive H/D interchange. These observations point to acyclic collision complexes rather than 4-membered ring complexes. The collision complexes generated with acetaldehyde and acetone decompose by elimination of formaldehyde only. Deuterium labelling has shown that the formaldehyde molecule contains the original methylene group of the reactant methoxymethyl cations. In addition, 18O labelling in acetone has shown that the original oxygen atom of the methoxymethyl cations is retained completely in the eliminated formaldehyde. These observations exclude any formation of 4-membered ring collision complexes and can only be explained by acyclic complexes. Possible mechanisms of all reactions mentioned are discussed in the light of these results.  相似文献   

20.
A catalytic synthesis of polyfluoroolefins was developed proceeding from polyfluorochlorocarbons with the use of industrially produced nickel-chromium catalyst. Three ways of the catalytic synthesis of fluoroolefins were implemented: the cleavage of vicinal chlorine atoms from polyfluorochlorocarbons, the replacement of vinyl chlorine atoms by hydrogen in fluorochloroolrfins, and the reductive dimerization of polyfluorochlorocarbons containing a trichloromethyl group. The condition of a prolonged operation of the nickel-chromium catalyst was found consisting in the application of quartz for absorption of the hydrogen fluoride formed as a side product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号