首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Let XZnZ denote the unitary Cayley graph of ZnZ. We present results on the tightness of the known inequality γ(XZnZ)γt(XZnZ)g(n), where γ andγt denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal’s function. In particular, we construct integers n with arbitrarily many distinct prime factors such that γ(XZnZ)γt(XZnZ)g(n)?1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs.  相似文献   

2.
Let ng be the number of numerical semigroups of genus g. We present an approach to compute ng by using even gaps, and the question: Is it true that ng+1>ng? is investigated. Let Nγ(g) be the number of numerical semigroups of genus g whose number of even gaps equals γ. We show that Nγ(g)=Nγ(3γ) for γ?g3? and Nγ(g)=0 for γ>?2g3?; thus the question above is true provided that Nγ(g+1)>Nγ(g) for γ=?g3?+1,,?2g3?. We also show that Nγ(3γ) coincides with fγ, the number introduced by Bras-Amorós (2012) in connection with semigroup-closed sets. Finally, the stronger possibility fγφ2γ arises being φ=(1+5)2 the golden number.  相似文献   

3.
Given a graph H, the Turán function ex(n,H) is the maximum number of edges in a graph on n vertices that does not contain H as a subgraph. Let s,t be integers and let Hs,t be a graph consisting of s triangles and t cycles of odd lengths at least 5 which intersect in exactly one common vertex. Erd?s et al. (1995) determined the Turán function ex(n,Hs,0) and the corresponding extremal graphs. Recently, Hou et al. (2016) determined ex(n,H0,t) and the extremal graphs, where the t cycles have the same odd length q with q?5. In this paper, we further determine ex(n,Hs,t) and the extremal graphs, where s?0 and t?1. Let ?(n,H) be the smallest integer such that, for all graphs G on n vertices, the edge set E(G) can be partitioned into at most ?(n,H) parts, of which every part either is a single edge or forms a graph isomorphic to H. Pikhurko and Sousa conjectured that ?(n,H)=ex(n,H) for χ(H)?3 and all sufficiently large n. Liu and Sousa (2015) verified the conjecture for Hs,0. In this paper, we further verify Pikhurko and Sousa’s conjecture for Hs,t with s?0 and t?1.  相似文献   

4.
Parabolic R-polynomials were introduced by Deodhar as parabolic analogues of ordinary R-polynomials defined by Kazhdan and Lusztig. In this paper, we are concerned with the computation of parabolic R-polynomials for the symmetric group. Let Sn be the symmetric group on {1,2,,n}, and let S={si|1in?1} be the generating set of Sn, where for 1in?1, si is the adjacent transposition. For a subset J?S, let (Sn)J be the parabolic subgroup generated by J, and let (Sn)J be the set of minimal coset representatives for Sn/(Sn)J. For uv(Sn)J in the Bruhat order and x{q,?1}, let Ru,vJ,x(q) denote the parabolic R-polynomial indexed by u and v. Brenti found a formula for Ru,vJ,x(q) when J=S?{si}, and obtained an expression for Ru,vJ,x(q) when J=S?{si?1,si}. In this paper, we provide a formula for Ru,vJ,x(q), where J=S?{si?2,si?1,si} and i appears after i?1 in v. It should be noted that the condition that i appears after i?1 in v is equivalent to that v is a permutation in (Sn)S?{si?2,si}. We also pose a conjecture for Ru,vJ,x(q), where J=S?{sk,sk+1,,si} with 1kin?1 and v is a permutation in (Sn)S?{sk,si}.  相似文献   

5.
Given a graph G, a defensive alliance of G is a set of vertices S?V(G) satisfying the condition that for each vS, at least half of the vertices in the closed neighborhood of v are in S. A defensive alliance S is called global if every vertex in V(G)?S is adjacent to at least one member of the defensive alliance S. The global defensive alliance number of G, denoted γa(G), is the minimum size around all the global defensive alliances of G. In this paper, we present an efficient algorithm to determine the global defensive alliance numbers of trees, and further give formulas to decide the global defensive alliance numbers of complete k-ary trees for k=2,3,4. We also establish upper bounds and lower bounds for γa(Pm×Pn),γa(Cm×Pn) and γa(Cm×Cn), and show that the bounds are sharp for certain m,n.  相似文献   

6.
7.
Let H?sG denote that any s-coloring of E(H) contains a monochromatic G. The degree Ramsey number of a graph G, denoted by RΔ(G,s), is min{Δ(H):H?sG}. We consider degree Ramsey numbers where G is a fixed even cycle. Kinnersley, Milans, and West showed that RΔ(C2k,s)2s, and Kang and Perarnau showed that RΔ(C4,s)=Θ(s2). Our main result is that RΔ(C6,s)=Θ(s32) and RΔ(C10,s)=Θ(s54). Additionally, we substantially improve the lower bound for RΔ(C2k,s) for general k.  相似文献   

8.
9.
10.
11.
12.
In 1965 Erd?s introduced f2(s): f2(s) is the smallest integer such that every l>f2(s) is the sum of s distinct primes or squares of primes where a prime and its square are not both used. We prove that for all sufficiently large s, f2(s)?p2+p3+?+ps+1+3106, and the set of s with the equality has the density 1.  相似文献   

13.
Let γ(G) and γg(G) be the domination number and the game domination number of a graph G, respectively. In this paper γg-maximal graphs are introduced as the graphs G for which γg(G)=2γ(G)?1 holds. Large families of γg-maximal graphs are constructed among the graphs in which their sets of support vertices are minimum dominating sets. γg-maximal graphs are also characterized among the starlike trees, that is, trees which have exactly one vertex of degree at least 3.  相似文献   

14.
This paper deals with interpolating sequences (zn)n for two spaces of holomorphic functions f in the unit disk D in C: those that are bounded and those that satisfy a Lipschitz condition |f(z)?f(w)|c|z?w|α, 0<α1. Given a sequence of values (wn)n in a certain target space, we look for a function f interpolating ‘in mean”, that is, with (f(z1)+?+f(zn))n=wn, n1. We obtain target spaces when we prescribe that the corresponding interpolating sequences be the uniformly separated ones or the union of two uniformly separated ones.  相似文献   

15.
The Catalan numbers occur in various counting problems in combinatorics. This paper reveals a connection between the Catalan numbers and list colouring of graphs. Assume G is a graph and f:V(G)N is a mapping. For a nonnegative integer m, let f(m) be the extension of f to the graph G
 Km¯ for which f(m)(v)=|V(G)| for each vertex v of Km¯. Let mc(G,f) be the minimum m such that G
 Km¯ is not f(m)-choosable and mp(G,f) be the minimum m such that G
 Km¯ is not f(m)-paintable. We study the parameter mc(Kn,f) and mp(Kn,f) for arbitrary mappings f. For x=(x1,x2,,xn), an x-dominated path ending at (a,b) is a monotonic path P of the a×b grid from (0,0) to (a,b) such that each vertex (i,j) on P satisfies ixj+1. Let ψ(x) be the number of x-dominated paths ending at (xn,n). By this definition, the Catalan number Cn equals ψ((0,1,,n?1)). This paper proves that if G=Kn has vertices v1,v2,,vn and f(v1)f(v2)f(vn), then mc(G,f)=mp(G,f)=ψ(x(f)), where x(f)=(x1,x2,,xn) and xi=f(vi)?i for i=1,2,,n. Therefore, if f(vi)=n, then mc(Kn,f)=mp(Kn,f) equals the Catalan number Cn. We also show that if G=G1G2?Gp is the disjoint union of graphs G1,G2,,Gp and f=f1f2?fp, then mc(G,f)=i=1pmc(Gi,fi) and mp(G,f)=i=1pmp(Gi,fi). This generalizes a result in Carraher et al. (2014), where the case each Gi is a copy of K1 is considered.  相似文献   

16.
In this paper, we show that for any fixed integers m2 and t2, the star-critical Ramsey number r1(K1+nKt,Km+1)=(m?1)tn+t for all sufficiently large n. Furthermore, for any fixed integers p2 and m2, r1(Kp+nK1,Km+1)=(m?1+o(1))n as n.  相似文献   

17.
The p-primary v1-periodic homotopy groups of a topological space X, denoted by v1?1π1(X)(p), are roughly the parts of the homotopy groups of X localized at a prime p which are detected by K-theory. We will use combinatorial number theory to determine, for p an odd prime, the values of n for which v1?1π2(n?1)(SU(n))(p)?Z/pn?1+νp(?np?!). As a corollary, we obtain new bounds for the p-exponent of π1(SU(n)).  相似文献   

18.
Let Ω?R2 be a bounded simply-connected domain. The Eikonal equation |?u|=1 for a function u:Ω?R2R has very little regularity, examples with singularities of the gradient existing on a set of positive H1 measure are trivial to construct. With the mild additional condition of two vanishing entropies we show ?u is locally Lipschitz outside a locally finite set. Our condition is motivated by a well known problem in Calculus of Variations known as the Aviles–Giga problem. The two entropies we consider were introduced by Jin, Kohn [26], Ambrosio, DeLellis, Mantegazza [2] to study the Γ-limit of the Aviles–Giga functional. Formally if u satisfies the Eikonal equation and if
(1)??(Σ?e1e2(?u))=0 and ??(Σ??1?2(?u))=0 distributionally in Ω,
where Σ?e1e2 and Σ??1?2 are the entropies introduced by Jin, Kohn [26], and Ambrosio, DeLellis, Mantegazza [2], then ?u is locally Lipschitz continuous outside a locally finite set.Condition (1) is motivated by the zero energy states of the Aviles–Giga functional. The zero energy states of the Aviles–Giga functional have been characterized by Jabin, Otto, Perthame [25]. Among other results they showed that if limn?I?n(un)=0 for some sequence unW02,2(Ω) and u=limn?un then ?u is Lipschitz continuous outside a finite set. This is essentially a corollary to their theorem that if u is a solution to the Eikonal equation |?u|=1 a.e. and if for every “entropy” Φ (in the sense of [18], Definition 1) function u satisfies ??[Φ(?u)]=0 distributionally in Ω then ?u is locally Lipschitz continuous outside a locally finite set. In this paper we generalize this result in that we require only two entropies to vanish.The method of proof is to transform any solution of the Eikonal equation satisfying (1) into a differential inclusion DFK where K?M2×2 is a connected compact set of matrices without Rank-1 connections. Equivalently this differential inclusion can be written as a constrained non-linear Beltrami equation. The set K is also non-elliptic in the sense of Sverak [32]. By use of this transformation and by utilizing ideas from the work on regularity of solutions of the Eikonal equation in fractional Sobolev space by Ignat [23], DeLellis, Ignat [15] as well as methods of Sverak [32], regularity is established.  相似文献   

19.
20.
For an operator TB(X,Y), we denote by am(T), cm(T), dm(T), and tm(T) its approximation, Gelfand, Kolmogorov, and absolute numbers, respectively. We show that, for any infinite-dimensional Banach spaces X and Y, and any sequence αm0, there exists TB(X,Y) for which the inequality 3α?m/6??am(T)?max{cm(t),dm(T)}?min{cm(t),dm(T)}?tm(T)?αm/9 holds for every mN. Similar results are obtained for other s-scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号