首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tetrahedron》2019,75(36):130489
An aggregation-induced emission (AIE)-active fluorescent chemosensor based on a tetraphenylethene (TPE) unit has been successfully designed and synthesized. Interestingly, the luminogen could detect Zn2+ selectively in a THF solution with the detection limit of 1.24 × 10−6 mol L−1. Meanwhile, the luminogen could also detect Hg2+ selectively in a THF-water mixture with the water content of 90%, and the detection limit was 2.55 × 10−9 mol L−1. Furthermore, the solid-state mechanochromic fluorescence behavior of the luminogen was investigated systematically. Indeed, the AIE-active luminogen also exhibited reversible mechanofluorochromic phenomenon involving fluorescent color change from blue to green, and powder X-ray diffraction results indicated that the switchable morphology conversion between crystalline and amorphous states was responsible for this mechanochromism phenomenon.  相似文献   

2.
A new rhodamine-based chemosensor was synthetized through a modified copper-catalyzed [3+2]-cycloaddition of an azidocoumarin with an alkynyl-rhodamine. Its sensing properties toward various metal cations in aqueous solutions were investigated by colorimetric changes, UV–vis and fluorescence spectroscopies. The sensor exhibited a high selectivity for Cr2+ over Cr3+ and other divalent cations such as Cu2+, Mg2+, Zn2+, Ca2+, Cd2+, Co2+, Hg2+ and Ni2+. The linear range of detection by fluorescence spectroscopy is 0.07–3.5 mM, with a detection limit of ca. 64 μM. The binding mode of Cr2+ with the sensor was rationalized through experimental evidences.  相似文献   

3.
A pyrene based chemosensor was designed and synthesized. The pyrene fluorophore was connected with a pyridine unit through a Schiff base structure to give the sensor (L). L was tested with a variety of metal ions and exhibited high colorimetric selectivities for Cu2+ and Fe3+ over other ions. Upon binding with Cu2+ or Fe3+, L showed an obvious optical color change from colorless to pink for Cu2+ or orange for Fe3+ over a wide pH range from 3 to 12. Moreover, the fluorescence of L at 370 nm decreased sharply after bonding with Fe3+, while other metal ions including Cu2+ had no apparent interference. Thus, using such single chemosensor, Cu2+ and Fe3+ can be detected independently with high selectivity and sensitivity. The limits of detection toward Cu2+ and Fe3+ were 8.5 and 2.0 μM, respectively. DFT calculation results also proved the formation of stable coordination complexes and the phenomenon of fluorescence quenching by Fe3+. Furthermore, L was also successfully used as a bioimaging reagent for detection of Fe3+ in living cells.  相似文献   

4.
A novel coumarin derivative CTT was synthesized via the condensation of 7-(N,N-diethylamino) coumarin-3-aldehyde with 5-amino-1,3,4-thiadiazole-2-thiol and its structure was characterized using infrared spectroscopy (IR), 1H NMR, mass spectrometry (MS) techniques, and elemental analysis. The recognition properties of CTT with metal ions were investigated in CH3CN–H2O (v/v = 1/1) solution using UV–vis absorption and fluorescence emission spectrum method. The results showed that CTT could monitor Cu2+ and Hg2+ simultaneously as a dual-function chemosensor in CH3CN–H2O (v/v = 1/1). CTT could be used to detect Cu2+ colorimetrically; when using CTT, a color change from yellowish-brown to yellowish-green could be readily observed by the naked eye. CTT showed turn-on fluorescent recognition of Hg2+, the fluorescence enhancement was attributed to the inhibited C=N isomerization and the obstructed excited state intramolecular proton transfer (ESIPT) of CTT. The recognition mechanism of CTT for Cu2+ and Hg2+ was studied by experiments and theoretical calculations, respectively. Therefore, CTT has the ability to be a “single chemosensor for dual targets.”  相似文献   

5.
New squaraine-based chemosensors SQ1 and SQ2 functionalized with 2-picolyl units were first synthesized and used as highly selective and sensitive colorimetric and fluorometric dual-channel sensors for Cu2+-specific recognition in aqueous systems. Among a series of individual metal ions, only Cu2+ could result in dramatic color changes. We also evaluated their capability of biological applications and found that SQ2 could be successfully employed as a Cu2+-selective probe in the fluorescence imaging of living cells.  相似文献   

6.
Jing Wang 《Tetrahedron》2009,65(34):6959-14
This paper presents a new colorimetric reversible fluorescent turn-on chemosensor molecule for zinc ion based on an azobenzene derivative. The basal fluorescence intensity of the chemosensor molecule is little affected under physiological pH 5-9, whilst the excitation (507 nm) and emission (610 nm) wavelength of the molecular probe for zinc ion is in the visible range.  相似文献   

7.
In this work, we design and synthesize the novel probe RC through introduction the 1-aza-4,13-dithia-15-crown-5 ring into the structure of rhodamine 6G hydrazide, where the N atom of crown ring is responsible for quenching of rhodamine fluorescence. The compound obtained behaves as multifunctional cation sensor providing selective fluorescent response to Au3+ and selective colorimetric response to Cu2+ ions in aqueous acetonitrile (1/1, v/v) at pH 7.0. The use of 10?5?M RC solution allowed reliable determination of target cations in the presence of a wide range of environmentally relevant ions with detection limits of 2?×?10?6?M and 5?×?10?7?M for gold and copper, respectively.  相似文献   

8.
A new ratiometric and selective fluorescent chemosensor (1) for quantification of zinc ions in aqueous ethanol has been synthesized and investigated in this work. In an environmentally friendly media of 30% (v/v) water/ethanol and 10 mM Tris-HCl neutral buffer (pH 7.03), 1 displayed selective Zn2+ ratiometric fluorescence response, with a dynamic working range of 1.0-8.0 μM and a detection limit of 0.5 μM Zn2+. The determination of Zn2+ in synthesized water sample was also successful.  相似文献   

9.
Quinolin-8-ol p-[10′,15′,20′-triphenyl-5′-porphyrinyl]benzoate (1) was synthesized for the first time and developed as a ratiometric fluorescent chemosensor for recognition of Hg2+ ions in aqueous ethanol with high selectivity. The 1–Hg2+ complexation quenches the fluorescence of porphyrin at 646 nm and induces a new fluorescent enhancement at 603 nm. The fluorescent response of 1 towards Hg2+ seems to be caused by the binding of Hg2+ ion with the quinoline moiety, which was confirmed by the absorption spectra and 1H NMR spectrum. The fluorescence response fits a Hill coefficient of 1 (1.0308), indicating the formation of a 1:1 stoichiometry for the 1–Hg2+ complex. The analytical performance characteristics of the chemosensor were investigated. The sensor shows a linear response toward Hg2+ in the concentration range of 3 × 10−7 to 2 × 10−5 M with a limit of detection of 2.2 × 10−8 M. Chemosensor 1 shows excellent selectivity to Hg2+ over transition metal cations except Cu2+, which quenches the fluorescence of 1 to some extent when it exists at equal molar concentration. Moreover, the chemosensor are pH-independent in 5.0–9.0 and show excellent selectivity for Hg2+ over transition metal cations.  相似文献   

10.
A new fluorescent probe (TCF-AC) that contains 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) skeleton has been developed. Probe TCF-AC exhibits highly selective and sensitive detection toward Pd0 in EtOH/H2O (1:1, v/v, PBS 20?mM, pH?=?7.4) solution with fluorescence “turn on” and colorimetric changes. The Pd0 detection by TCF-AC holds some advantages including good anti-interference ability, a relative large Stokes shift (>100?nm), and a low detection limit (7.05?×?10?7?M). Cell imaging studies demonstrate that TCF-AC is applicable to detect Pd0 in living HeLa cells.  相似文献   

11.
A novel coumarin-based compound 1 featuring thiosemicarbazone as binding unit, was reported as a colorimetric and fluorescent probe for the detection of fluoride anion. The addition of F? to a solution of probe 1 in tetrahydrofuran resulted in evident naked-eye color change from green-yellow to orange-red under daylight and obvious fluorescence quenching within 3 s. And the detection limit toward F? was calculated to be as low as 2.16 × 10?7 mol/L. 1H NMR titrations proved that the interaction between 1 and fluoride ion: hydrogen bond at low fluoride ion concentration, deprotonation at high fluoride ion concentration. Besides, it exhibited highly sensitivity and selectivity for F? over other examined ions (Cl?, Br?, I?, AcO?, NO3?, HSO4?, H2PO4?) in tetrahydrofuran solution.  相似文献   

12.
Fluorogenic benzothiazole-based receptor has been easily immobilised onto filter paper and silica nanoparticle by sol-gel reaction. The sensing ability of the benzothiazole-immobilised thin layer filter paper chromatography (TLC-1) was evaluated on the basis of fluorescent changes caused by metal ions that were dropped onto the TLC plate. The TLC-1 exhibited a high affinity and selectivity for Hg2+ over other competing metal ions. Therefore, the TLC-1 holds promise as a portable sensor for the detection of Hg2+ in aqueous solution. Furthermore, the adsorption capacity of a column packed with SiO2-1 was evaluated by the application of metal ions under various experimental conditions, such as pH, flow rate and concentration. The SiO2-1 column removed 98% of Hg2+ from drinking water containing 10 ppb of Hg2+. The adsorption capacity of the SiO2-1 column was not strongly affected by pH and flow rates.  相似文献   

13.
We develop a novel coumarin-alkyne derivative(NC7-AL), which can specifically react with Au~(3+) and give a colorimetric and fluorescent ‘‘turn-on' response toward Au~(3+). Notably, other alkynophilic metal species such as Au+, Ag+, Pd~(2+), Ni~(2+), Cu~(2+), and Hg~(2+) do not produce an interfering signal. A good linear relationship between emission intensity at 420 nm and Au~(3+) concentration from 0 to 2 equivalent is observed, and the detection limit(3s/k) is estimated to be ca. 3.58 nmol/L. Harnessing the Au~(3+)-induced color change from light yellow to colorless, we find that NC7-AL-based modified TLC plate can be used for convenient naked-eye detection of Au~(3+).  相似文献   

14.
A simple cation sensor 1 ((E)-9-((2-hydroxynaphthalen-1-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol) bearing both a julolidine moiety and a naphthol moiety was designed and synthesized as a colorimetric sensor for Cu2+. In methanol solution of 1, the presence of Cu2+ led to a distinct naked-eye color change from yellow to purple. The proposed sensing mechanism might be attributed to the decrease in internal charge transfer band. Moreover, the resulting 1–Cu2+ complex sensed cyanide in a fluorometric way via fluorescent changes. These results demonstrate a novel type of the sequential recognition of Cu2+ and CN using two different sensing methods, color change, and fluorescence.  相似文献   

15.
A cyclic tetrapeptide composed of alternating glycine and 8-amino-4-iso-butoxyquinoline-2-carboxylic acid was designed and synthesized. Its complexation properties with anions were performed by fluorescence spectroscopy and 1H NMR method.  相似文献   

16.
In this work, we have successfully developed novel silver nanoconjugates of pyrazolone analogue and screened its chemosensing potential in aqueous medium. Bispyrazolone silver nanoparticles (Bispyra-AgNPs) were synthesised and characterised through FTIR, UV-visible spectroscopy and atomic force microscopy. The sensing ability was explored towards Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Li+, Pb2+, La3+, Hg2+, Mg2+, Ni2+ and Ba2+ metal ions, respectively. Bispyra-AgNPs showed a highly quenching potential in selective recognition of Cu2+and colour of the solution immediately turned from yellow to purple, after the addition of Cu2+ in to the solution. The developed method also displayed a remarkable selectivity for Cu2+ over others interfering metal ions. The binding ratio and stoichiometry of host-guest complex was found to be 1:1 and determined by Job’s method. The propose method is facile and sensitive to detect Cu2+ with detection limit of 10 µM.  相似文献   

17.
Colorimetric receptors R1 and R2 have been designed and synthesized by Schiff base condensation and characterised by standard spectroscopic techniques. Anion binding ability of the receptors have been investigated quantitatively through optical, electrochemical and 1HNMR titration studies. UV-vis spectra of receptor R1 and R2 exhibited a significant red shift for F? and AcO? ions with a visual color response. Receptor R1 exhibited selective response towards AcO? ion in the presence of HEPES buffer media. Incremental color change of receptor R2 with the higher equivalence of AcO? ions clearly represent the ratiometric response. Cyclic voltammetric studies of R1 and R2 exhibits shift in oxidation and reduction peak with successive addition of AcO? ions indicating the anion induced oxidation of -NH and reduction of the keto group and nitro species. Electrooptical and 1H NMR titration studies of R2 collectively reflects the anion induced change of chromophore from C=N to N=N indicative of azo-hydrazone tautomeric signaling in the presence of AcO? ions. Lower detection limit of 2.1 and 0.41 ppm achieved with sodium salt of AcO? ion with R1 and R2 reflects their utility as colorimetric chemosensor.  相似文献   

18.
A new pyrene derivative (1) containing a diaminomaleonitrile moiety exhibits high selectivity for Cu2+ detection. Significant fluorescence enhancement was observed with chemosensor 1 in the presence of Cu2+. However, the metal ions Ag+, Ca2+, Cd2+, Co2+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced only minor changes in fluorescence values for the system. The apparent association constant (Ka) of Cu2+ binding in chemosensor 1 was found to be 5.55×103 M−1. The maximum fluorescence enhancement caused by Cu2+ binding in chemosensor 1 was observed over the pH range 5-7.5.  相似文献   

19.
The phosphorus-containing PODIPY 1 as a chemosensor can detect Hg~(2+) by a color change from pink to violet red without the use of any instrumentation. PODIPY 1 was selective to Hg~(2+)with a remarkable absorption change, and addition of other relevant metal ions caused almost no absorption change. The new PODIPY dye 1 was sensitive to various concentrations of Hg~(2+). The energy gap between the HOMO and LUMO of the metal complex 1–Hg~(2+)is smaller than that of chemosensor 1, which is in good agreement with the red shift in the absorption observed upon treatment of 1 with Hg~(2+). The 1-based test strips were easily fabricated and low-cost, useful in practical and efficient Hg~(2+)test kits.  相似文献   

20.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号