首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(amic acid) was synthesized by means of low‐temperature‐solution polymerization of 3,3′‐dihydroxybenzidine and pyromellitic dianhydride in N,N‐dimethylacetamide. The precursor polymer was heat‐treated at different temperatures to create a polybenzoxazole (PBO) through a polyimide (PI). PI containing the hydroxyl group was rearranged by decarboxylation with heat treatment, resulting in a fully aromatic PBO. Hexadecylamine was used as an organophilic alkylamine in organo‐clay. We have tried to clarify the intercalation of heterocyclic polymer chains to hexadecylamine–montmorillonite (C16‐MMT) and improve tensile properties. It was found that the addition of only a small amount of organo‐clay was enough to improve the mechanical properties of PBO. Maximum enhancement in the ultimate tensile strength for PBO hybrids was observed for the blends containing 4% C16‐MMT. The initial modulus monotonically increased with further increases in the C16‐MMT content. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 471–476, 2001  相似文献   

2.
Organo‐modified layered silicates were synthesized and used as inorganic carriers for CoCl2(PtBu2Me)2‐MAO catalyst in the polymerization of 1,3‐butadiene, yielding cis‐1,4‐enriched polybutadiene. The organoclays were prepared by: (i) intercalation of (ar‐vinyl‐benzyl)trimethyl ammonium chloride salt through an ion exchange reaction, and (ii) the edge‐surface grafting by trimethylchlorosilane. The ammonium modifier acts as “spacer” increasing the layer d‐spacing and as “filler” favoring the silylation of the edge‐surface clay hydroxyls. The grafted silane prevents the MAO cocatalyst from reacting with the edge‐OHs, by forcing it to react within the interlayer clay region. MAO lead to methylation of the cobalt complex and carbanion abstraction to give a cobalt‐methyl cation that is stabilized by the MAO anion. The nanoconfined cationic alkylated species insert the butadiene on the Co‐Me bond affording the growth of the polymer chains within the clay layers. The growing of the macromolecular chains fills the interlayer silicate region giving an intercalated polybutadiene rubber nanocomposite. The role of the silicate organo modification on the heterogeneous catalyst structural features, the polymerization behavior and the nanocomposite structures are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Poly(ethylene terephthalate‐co‐ethylene naphthalate) (PETN)/organoclay was synthesized with the solution intercalation method. Hexadecylamine was used as an organophilic alkylamine in organoclay. Our aim was to clarify the intercalation of PETN chains to hexadecylamine–montmorillonite (C16–MMT) and to improve both the thermal stability and tensile property. We found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PETN/C16–MMT hybrid films. Maximum enhancement in both the ultimate tensile strength and initial modulus for the hybrids was observed in blends containing 4 wt % C16–MMT. Below a 4 wt % clay loading, the clay particles could be highly dispersed in the polymer matrix without a large agglomeration of particles. However, an agglomerated structure did form in the polymer matrix at a 6 wt % clay content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2581–2588, 2001  相似文献   

4.
New nanocomposite materials based on polyurethane intercalated into organoclay layers have been synthesized via in situ polymerization. The syntheses of polyurethane–organoclay hybrid films were carried out by swelling the organoclay [12‐aminododecanoic acid montmorillonite] into different kinds of diols followed by addition of diisocyanate then casting in a film. The homogeneous dispersion of MMT in the polymer matrix is evidenced by scanning electron microscope and x‐ray diffraction, which showed the disappearance of the peak characteristic to d001 spacing. It was found that the presence of organoclay has improved the thermal, solvent resistance and mechanical properties. Also, the tensile strength is increased with increasing the organoclay contents to 20% by the ratio 182% related to the PU with 0% organoclay. On the contrary, the elongation has decreased with increasing the organoclay contents. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Complete exfoliation of montmorillonite during Ti‐based Ziegler‐Natta polymerization of ethylene has been successfully carried out by using montmorillonite (MMT‐OH) modified with intercalation agents containing hydroxyl groups. Hydroxyl groups in intercalation agents offer facile reactive sites for anchoring catalysts in between silicate layers. Comparison of exfoliation characteristics between MMT‐OH and non‐intercalated montmorillonite showed that the feasibility of exfoliation during ethylene polymerization was highly dependent on the catalyst fixation method.  相似文献   

6.
Summary: Conducting polyaniline (PANI) and montmorillonite (MMT) nanocomposites were prepared from aniline sulfate and MMT by a mechanochemical synthesis route. X‐Ray diffraction analysis confirmed that, by controlling the aniline sulfate content, mechanochemical synthesis led to two types of different formations. After polymerization, the mechanochemical route synthesized much more PANI between the clay layers compared to a solution method. The electrical conductivities of the synthesized PANI‐MMT nanocomposites in pressed pellets ranged in the order of between 10−4 and 10−3 S · cm−1.

X‐ray powder diffraction patterns of the intercalation products prepared by grinding montmorillonite with various amounts of Ani‐SO4 in a mortar.  相似文献   


7.
We investigated the effects of the multilayer polymer‐clay nanohybrid passivation films on the stability of pentacene organic thin‐film transistors (OTFTs) exposed to air and UV irradiation. Well‐ordered multilayer films were deposited by the spin‐assisted layer‐by‐layer assembly method using photocrosslinkable poly(vinyl alcohol) with the N‐methyl‐4(4′‐formylstyryl)pyridinium methosulfate acetal group (SbQ‐PVA) and Na+‐montmorillonite in a water‐based solution process. When photocrosslinked, these SbQ‐PVA/clay multilayers were found to serve as excellent barriers to O2 and UV‐light. Moreover, when used as passivation layers, they enhanced the stability of pentacene OTFT devices exposed to air and UV radiation.  相似文献   

8.
The poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)/montmorillonite(MMT) nanocomposites were investigated by wide‐angle X‐ray scattering (WAXS). The aim of the investigation was solution intercalation of MMT with PHBV. Beside the usual orthorhombic unit cell, a stable pseudohexagonal β‐structure of PHBV was obtained. Well known β‐structure has one common WAXS reflection (d = 0.480 nm), which corresponds to the mean distance of PHBV chains in the pseudohexagonal structure. The new β‐structure has two diffraction peaks in the WAXS pattern. It is a three‐dimensionally ordered crystalline structure oriented in parallel with the silica layers of MMT. The new polymorphic form is supposed to be growing on the layers of MMT. Its layers serve as primary nucleation centers for epitaxial growth of the β‐structure. After annealing, this polymorphic form of PHBV disappears and it is transformed into the more stable α‐form leading to an enhanced total crystallinity of the polymer comprised in the nanocomposite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 751–755, 2009  相似文献   

9.
In the melt intercalation of cation‐exchange clay, mixtures of montmorillonite and poly(styrene‐co‐acrylonitrile) (SAN) with various acrylonitrile contents were studied to examine the effect of specific interaction. When organic molecules with hydroxyl groups were used as intercalants for the clay, the amount of SAN penetrating the gallery of the layered structure of the clay and the corresponding increase in the gallery height occurred at a much higher rate because of the attractive specific interaction between acrylonitrile groups and polar groups on the clay surface. However, there was a limit to the increase in the gallery height, and the tendency for the gallery height to increase with the acrylonitrile group content disappeared when the acrylonitrile content was greater than 30 wt %, implying that excessive attractive interaction on the clay surfaces and polymer molecules glued the two adjacent silicate layers together; consequently, the increase in the gallery height could not be accomplished. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2430–2435, 2001  相似文献   

10.
Organically modified montmorillonite was synthesized with a novel 1,2‐dimethyl‐3‐N‐alkyl imidazolium salt or a typical quaternary ammonium salt as a control. Poly(ethylene terephthalate) montmorillonite clay nanocomposites were compounded via melt‐blending in a corotating mini twin‐screw extruder operating at 285 °C. The nanocomposites were characterized with thermal analysis, X‐ray diffraction, and transmission electron microscopy to determine the extent of intercalation and/or exfoliation present in the system. Nanocomposites produced with N,N‐dimethyl‐N,N‐dioctadecylammonium treated montmorillonite (DMDODA‐MMT), which has a decomposition temperature of 250 °C, were black, brittle, and tarlike resulting from DMDODA degradation under the processing conditions. Nanocomposites compounded with 1,2‐dimethyl‐3‐N‐hexadecyl imidazolium treated MMT, which has a decomposition temperature of 350 °C, showed high levels of dispersion and delamination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2661–2666, 2002  相似文献   

11.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

12.
A new technology for the production of transparent material, using a “crystalline” polymer, is proposed in this study. In addition, a heat‐resistant transparent flexible plastic film with a high hydrophobic surface and a thermal decomposition temperature near 400 °C was created. Partially fluorinated crystalline polymer with switchboard‐type lamellae results high transparency as a consequence of the formation of a high‐density amorphous structure based on high‐temperature drawing just below the melting point at 250 °C. Melt‐compounding with montmorillonite modified by the long‐chain quaternary phosphonium with high coverage induces formation of a nanohybrid that retains transparency and also results in an increase in the thermal degradation temperature by over 50 °C. Through this technology, which results in heat‐resistance, transparency, and flexibility, the nano‐micro‐millimeter structures of solid‐state polymers are hierarchically controlled, which enables the creation of new materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1674–1690  相似文献   

13.
The feasibility of constructing polymer/clay nanocomposites with polypeptides as the matrix material is shown. Cationic poly‐L‐lysine · HBr (PLL) was reinforced by sodium montmorillonite clay. The PLL/clay nanocomposites were made via the solution‐intercalation film‐casting technique. X‐ray diffraction and transmission electron microscopy data indicated that montmorillonite layers intercalated with PLL chains coexist with exfoliated layers over a wide range of relative PLL/clay compositions. Differential scanning calorimetry suggests that the presence of clay suppresses crystal formation in PLL relative to the neat polypeptide and slightly decreases the PLL melting temperature. Despite lower crystallinity, dynamic mechanical analysis revealed a significant increase in the storage modulus of PLL with an increase in clay loading producing storage modulus magnitudes on par with traditional engineering thermoplastics. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2579–2586, 2002  相似文献   

14.
《先进技术聚合物》2018,29(2):806-813
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) was used to graft poly(N‐isopropylacrylamide) (PNIPAM) brush layers with a controllable thickness in the 10‐nm range from silicon substrates. The rate of polymerization of N‐isopropylacrylamide was tuned by the [Cu(II)]0/[Cu(I)]0 ratio between the deactivating and activating species. The polymer layer thickness was characterized by atomic force microscopy (AFM) and ellipsometry. PNIPAM layers with a dry thickness between 5.5 and 16 nm were obtained. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed that the chemical structure is PNIPAM brushes. Analysis of the AFM data showed that our procedure leads to polymer grafts in the “mushroom‐to‐brush” transition regime.  相似文献   

15.
The structures of two hydrated salts of 4‐aminophenylarsonic acid (p‐arsanilic acid), namely ammonium 4‐aminophenylarsonate monohydrate, NH4+·C6H7AsNO3·H2O, (I), and the one‐dimensional coordination polymer catena‐poly[[(4‐aminophenylarsonato‐κO)diaquasodium]‐μ‐aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter‐species N—H...O and arsonate and water O—H...O hydrogen bonds, giving the common two‐dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen‐bonding interactions involving the para‐amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na+ cation is coordinated by five O‐atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square‐pyramidal coordination environment. The water bridges generate one‐dimensional chains extending along c and extensive interchain O—H...O and N—H...O hydrogen‐bonding interactions link these chains, giving an overall three‐dimensional structure. The two structures reported here are the first reported examples of salts of p‐arsanilic acid.  相似文献   

16.
Two new ZnII coordination polymers, namely, catena‐poly[[dibromidozinc(II)]‐μ‐[3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione‐κ2N:N′]], [ZnBr2(C24H14N2O2)]n, (1), and poly[[bromido[μ3‐10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olato‐κ3N:N′:O9]zinc(II)] hemihydrate], {[ZnBr(C24H15N2O2)]·0.5H2O}n, (2), have been synthesized through hydrothermal reaction of ZnBr2 and a 60° angular phenanthrenedione‐based linker, i.e. 3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione, in different solvent systems. Single‐crystal analysis reveals that polymer (1) features one‐dimensional zigzag chains connected by weak C—H...π and π–π interactions to form a two‐dimensional network. The two‐dimensional networks are further stacked in an ABAB fashion along the a axis through C—H...O hydrogen bonds. Layers A and B comprise left‐ and right‐handed helical chains, respectively. Coordination polymer (2) displays a wave‐like two‐dimensional layered structure with helical chains. In this compound, there are two opposite helical –Zn–HL– chains [HL is 10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olate] in adjacent layers. The layers are packed in an ABAB sequence and are further connected through O—H...Br and O—H...O hydrogen‐bond interactions to form a three‐dimensional framework. In (1) and (2), the mutidentate L and HL ligands exhibits different coordination modes.  相似文献   

17.
An amphiphilic comb‐like copolymer consisting of a poly(vinyl chloride) (PVC) backbone and poly((oxyethylene)9 methacrylate) (POEM) side chains, PVC‐graft‐POEM was synthesized via atom transfer radical polymerization. This comb copolymer was complexed with LiCF3SO3 to form a solid polymer electrolyte. FTIR and FT‐Raman spectroscopy indicate that lithium salts are dissolved in the ion conducting POEM domains of microphase‐separated graft copolymer up to 10 wt % of salt concentration. Microphase‐separated structure of the materials and the selective interaction of lithium ions with POEM domains were revealed by transmission electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry. The maximum ionic conductivity of 4.4 × 10?5 S/cm at room temperature was achieved at 10 wt % of salt concentration, above which salts are present as less mobile species such as ion pairs and higher order ionic aggregates, as characterized by FT‐Raman spectroscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1443–1451, 2009  相似文献   

18.
Bis(cyclopentadienyl)‐zirconium dichloride (Cp2ZrCl2) and (1,4‐bis(2,6‐diisopropylphenyl)‐acenaphthenediimine) dichloronickel (Ni‐diimine) were supported on montmorillonite (MMT) pretreated with triisobutylaluminum and 10‐undecence‐1‐ol to produce in situ polyethylene–clay nanocomposites in a gas‐phase reactor. The development of the nanocomposite morphology was investigated with transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X‐ray diffraction (XRD) analysis. During polymerization, the MMT layers were partially exfoliated by the growing polymer chains, starting from the openings of the clay galleries, but intercalation and exfoliation occurred only to a certain extent. The thermal properties of the nanocomposites we also analyzed by differential scanning calorimetry (DSC).

  相似文献   


19.
Summary: Quartz crystal microbalance with dissipation monitoring (QCM‐D) is employed to determine the effect of salt on the volume phase transition of thermoresponsive polymer brushes. Changes in mass and viscoelasticity of poly(N‐isopropylacrylamide) (PNIPAM) layers grafted from a QCM‐D crystal are measured as a function of temperature, upon contact with aqueous solutions of varying salt concentrations. The phase‐transition temperature of PNIPAM brushes, TC,graft, quantified from the QCM‐D measurements is found to decrease as the concentration of salt is increased. This phenomenon is explained by the tendency of salt ions to affect the structure of water molecules (Hofmeister effect). However, in contrast to the linear decrease in phase‐transition temperature upon increasing salt concentration observed for free PNIPAM, the trend in TC,graft for PNIPAM brushes is distinctively non‐linear.

Schematic representation of the effect of salt concentration on the phase transition behavior of thermoresponsive polymer brushes.  相似文献   


20.
The X‐ray crystallographic studies are reported for a water‐soluble sodium complex of organic acid, {[Na(NSNDC)(H2O)2]·H2O}n, (NSNDC = 7‐Nitro‐5‐sulfonate‐napthalene‐1,4‐dicarboxy‐acid). It contains layers of vertically oriented NNSDC‐anions sandwiching cations and water molecules. The rows of anions are linked in a direction by sodium ions and along b by hydrogen bonding, which have microporous channels (9.410 × 3.210Å2) along the crystallographic b‐axis. Considering the Na coordination environments, π‐π stacking interaction between aryl ring and hydrogen bonds, the title compound represents a stably 2D infinitely extended structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号