首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new ursane‐type saponins, monepalosides C–F, together with a known saponin, mazusaponin II, were isolated from Morina nepalensis var. alba Hand.‐Mazz. Their structures were determined to be 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside C, 1 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside D, 2 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[beta;‐D ‐glucopyranosy‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside E, 3 ) and 3‐O‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranoside (monepaloside F, 4 ) on the basis of chemical and spectroscopic evidence. 2D NMR techniques, including 1H–1H COSY, HMQC, 2D HMQC‐TOCSY, HMBC and ROESY, and selective excitation experiments, including SELTOCSY and SELNOESY, were utilized in the structure elucidation and complete assignments of 1H and 13C NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The chemical study of Sechium mexicanum roots led to the isolation of the two new saponins {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (1) and {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐[β‐D ‐apiosyl‐(1 → 3)]‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (2), together with the known compounds {3‐O‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,6β,16α,23‐pentahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (3), tacacosides A1 (4) and B3 (5). The structures of saponins 1 and 2 were elucidated using a combination of 1H and 13C 1D‐NMR, COSY, TOCSY, gHMBC and gHSQC 2D‐NMR, and FABMS of the natural compounds and their peracetylated derivates, as well as by chemical degradation. Compounds 1–3 are the first examples of saponins containing polygalacic and 16‐hydroxyprotobasic acids found in the genus Sechium, while 4 and 5, which had been characterized partially by NMR, are now characterized in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Two new acylated flavonol glycosides, 3‐O‐{[2‐O‐β‐D ‐glucopyranosyl]‐3‐[O‐β‐D ‐glucopyranosyl]‐4‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]}‐α‐L ‐rhamnopyranosyl‐kaempferol 7‐O‐α‐L ‐rhamnopyranoside and 3‐O‐{2‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]‐3‐[O‐β‐D ‐glucopyranosyl]‐4‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]}‐α‐L ‐rhamnopyranosyl‐kaempferol 7‐O‐α‐L ‐rhamnopyranoside, trivially named as brauhenefloroside E (1) and F (2), respectively, were isolated from the fruits of Stocksia brauhica and their structures were elucidated using spectroscopic methods, including 2D NMR experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Extensive 1D (1H NMR, HBBD‐13C NMR, DEPT‐13C NMR) and 2D (COSY, TOCSY, NOESY, HMQC and HMBC) NMR analysis was used to characterize the structure of a new bisdesmoside saponin isolated from the methanol extract of stems of Cordia piauhiensis Fresen as 3β‐O‐[α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl]ursolic acid 28‐O‐[β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranosyl] ester. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Twelve triterpene saponins were isolated by successive MPLC over silica gel from four species of Polygalaceae: From Polygala ruwenzoriensis, five new saponins 1 – 5 of which 1 – 4 as two pairs of (E)/(Z)‐isomers, together with the four known compounds tenuifoline, (E)‐ and (Z)‐senegasaponin b, (E)‐ and (Z)‐senegin II, and polygalasaponin XXVIII, from the genus Carpolobia, one new saponin 6 from C. alba and the known arilloside ( 11 ) from C. lutea, and another new triterpene glycoside 7 from Polygala arenaria. Their structures were established mainly by 600‐MHz 2D‐NMR techniques (1H,1H‐COSY, TOCSY, NOESY, HSQC, HMBC) as 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐α‐L ‐arabinopyranosyl‐(1 → 4)‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐4‐O‐[(E)‐4‐methoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 1 ) and its (Z)‐isomer 2 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐α‐L ‐arabinopyranosyl‐(1 → 4)‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 3 ) and its (Z)‐isomer 4 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐[O‐β‐D ‐galactopyranosyl‐(1 → 4)‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐fucopyranosyl] ester ( 5 ), 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐O‐[β‐D ‐galactopyranosyl‐(1 → 4)]‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐O‐[β‐D ‐apiofuranosyl‐(1 → 3)]‐4‐O‐acetyl‐β‐D ‐fucopyranosyl} ester ( 6 ), and 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐β‐D ‐galactopyranosyl‐(1 → 4)‐O‐[β‐D ‐glucopyranosyl‐(1 → 3)]‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐fucopyranosyl} ester ( 7 ) (presenegenin = (2β,3β,4α)‐2,3,27‐trihydroxyolean‐12‐ene‐23,28‐dioic acid).  相似文献   

6.
From the whole plant of Morina nepalensis var. alba Hand.‐Mazz., two new acylated flavonoid glycosides ( 1 and 2 ), together with four known flavonoid glycosides ( 3–6 ), were isolated. Their structures were determined to be quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (monepalin A, 1 ), quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranoside (monepalin B, 2 ), quercetin 3‐O‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (rumarin, 3 ), quercetin 3‐O‐β‐D ‐galactopyranoside ( 4 ), quercetin 3‐O‐β‐D ‐glucopyranoside ( 5 ) and apigenin 4O‐β‐D ‐glucopyranoside ( 6 ). Their structures were determined on the basis of chemical and spectroscopic evidence. Complete assignments of the 1H and 13C NMR spectra of all compounds were achieved from the 2D NMR spectra, including H–H COSY, HMQC, HMBC and 2D HMQC‐TOCSY spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Eight new acylated triterpene saponins 1 – 8 were isolated from the roots of Polygala arenaria as four inseparable (E)/(Z) mixtures of the 4‐methoxycinnamoyl and 3,4‐dimethoxycinnamoyl derivatives by repeated MPLC over silica gel. Their structures were established mainly by 600‐MHz 2D‐NMR techniques (1H,1H‐COSY, TOCSY, NOESY, HSQC, HMBC) as 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐(Oβ‐D ‐galactopyranosyl‐(1→4)‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐{4‐O‐[(E)‐4‐methoxycinnamoyl]}‐β‐D ‐fucopyranosyl) ester and its (Z)‐isomer ( 1 / 2 ), 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐(Oβ‐D ‐galactopyranosyl‐(1→4)‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐{4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]}‐β‐D ‐fucopyranosyl) ester and its (Z)‐isomer ( 3 / 4 ), 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐(Oβ‐D ‐glucopyranosyl‐(1→3)‐Oα‐L ‐arabinopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐{4‐O‐[(E)‐4‐methoxycinnamoyl]}‐β‐D ‐fucopyranosyl) ester and its (Z)‐isomer ( 5 / 6 ), and 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐(Oβ‐D ‐glucopyranosyl‐(1→3)‐Oα‐L ‐arabinopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐{4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]}‐β‐D ‐fucopyranosyl) ester and its (Z)‐isomer ( 7 / 8 ) (presenegenin=(2β,3β)‐2,3,27‐trihydroxyolean‐12‐ene‐23,28‐dioic acid). In our in vitro lymphocyte proliferation assay (Jurkat T‐leukemia cells), a fraction containing 1 – 4 showed a concentration‐dependent immunomodulatory effect. This effect was not found for the prosapogenin (tenuifolin=3‐O‐(β‐D ‐glucopyranosyl)presenegenin), underlining the importance of the acyl? oligosaccharidic moiety.  相似文献   

8.
Three new acacic acid derivatives, named coriariosides C, D, and E ( 1–3 ) were isolated from the roots of Albizia coriaria. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies and mass spectrometry as 3‐O‐[β‐D ‐xylopyranosyl‐(1 → 2)‐β‐D ‐fucopyranosyl‐(1 → 6)‐2‐(acetamido)‐2‐deoxy‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐ 6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 1 ), 3‐O‐{β‐D ‐fucopyranosyl‐(1 → 6)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐α‐L ‐rhamno pyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 2 ), and 3‐O‐[β‐D ‐fucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl)‐β‐D ‐quinovopyranosyl]octa‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐glucopyranosyl ester ( 3 ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Five new triterpene saponins 1 – 5 were isolated from the roots of Muraltia ononidifolia E. Mey along with the two known saponins 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid 28‐[Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester and 3‐O‐(β‐D ‐glucopyranosyl)medicagenic acid 28‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester (medicagenic acid=(4α,2β,3β)‐2,3‐dihydroxyolean‐12‐ene‐23,28‐dioic acid). Their structures were elucidated mainly by spectroscopic experiments, including 2D‐NMR techniques, as 3‐O‐(β‐D ‐glucopyranosyl)medicagenic acid 28‐[Oβ‐ D ‐apiofuranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester ( 1 ), 3‐O‐(β‐D ‐glucopyranosyl)medicagenic acid 28‐{[Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl} ester ( 2 ), 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl} ester ( 3 ), 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid 28‐[Oα‐L ‐rhamnopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl] ester ( 4 ), and 3‐O‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]medicagenic acid ( 5 ).  相似文献   

10.
Five new triterpenoid saponins, including 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 1 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐O‐(6‐O‐acetyl)‐β‐d ‐glucopyranosyl‐(1→3)‐[β‐d ‐xylopyranosyl‐(1→4)]‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 2 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 3 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 4 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐O‐(6‐O‐acetyl)‐β‐d ‐glucopyranosyl‐(1→3)‐[β‐d ‐xylopyranosyl‐(1→4)]‐α‐l ‐rhamnopyranosyl‐(1→2)‐[(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 5 ) together with two known congeners, saponariosides A ( 6 ) and B ( 7 ) were isolated from the roots of Saponaria officinalis L. Their structures were elucidated by extensive spectroscopic methods, including 1D‐ (1H, 13C) and 2D‐NMR (DQF‐COSY, TOCSY, HSQC, and HMBC) experiments, HR‐ESI‐MS, and acid hydrolysis.  相似文献   

11.
Four new triterpenoid saponins, pachystegiosides A ( 1 ), B ( 2 ), C ( 3 ), and D ( 4 ), were isolated from the roots of Acanthophyllum pachystegium K. H. Their structures were elucidated by means of a combination of homo‐ and heteronuclear 2D‐NMR techniques (COSY, TOCSY, NOESY, HSQC, and HMBC) and by FAB‐MS. The new compounds were characterized as 3‐O‐{Oβ‐D ‐galactopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucuronopyranosyl}quillaic acid 28‐{Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[3,4‐di‐O‐acetyl‐β‐D ‐quinovopyranosyl‐(1→4)]‐β‐D ‐fucopyranosyl}ester ( 1 ), 3‐O‐{Oβ‐D ‐galactopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucuronopyranosyl}quillaic acid 28‐{Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[4‐O‐acetyl‐β‐D ‐quinovopyranosyl‐(1→4)]‐β‐D ‐fucopyranosyl} ester ( 2 ), 3‐O‐{Oβ‐D ‐galactopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucuronopyranosyl}quillaic acid 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[4‐O‐acetyl‐β‐D ‐quinovopyranosyl‐(1→4)]‐β‐D ‐fucopyranosyl} ester ( 3 ), and gypsogenic acid 28‐[Oβ‐D ‐glucopyranosyl‐(1→2)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐Oβ‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐galactopyranosyl] ester ( 4 ).  相似文献   

12.
Three new flavonol glycosides, namely, isorhamnetin 3‐O‐(6″‐O‐(Z)‐p‐coumaroyl)‐β‐D ‐glucopyranoside ( 1 ), quercetin 3‐O‐α‐L ‐rhamnopyranosyl(1 → 2)‐α‐L ‐arabinopyranosyl(1 → 2)‐α‐L ‐rhamnopyranoside ( 2 ), and quercetin 3‐O‐α‐L ‐arabinopyranosyl(1 → 2)‐α‐L ‐rhamnopyranoside ( 3 ), were isolated from the stems of Alphitonia philippinensis. Their structures were established by spectral analysis. In addition, NMR data were assigned for ceanothenic acid ( 11 ). Some of the isolated triterpenoids and flavonoid glycosides showed cytotoxicity against human PC‐3 cells and hepatoma HA22T cells, and inhibition of replication on herpes simplex virus type‐1.  相似文献   

13.
Three new medicagenic acid saponins, micranthosides A–C ( 1 – 3 ), were isolated from the roots of Polygala micrantha Guill . & Perr ., along with six known presenegenin saponins. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR experiments (1H, 13C, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[Oβ‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 1 ), 3‐Oβ‐D ‐glucopyranosylmedicagenic acid 28‐[O‐6‐O‐acetyl‐β‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 2 ), and 3‐O‐{Oβ‐D ‐glucopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl}medicagenic acid 28‐{Oβ‐D ‐apiofuranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl} ester ( 3 ). Compounds 1 – 3 were evaluated against HCT 116 and HT‐29 human colon cancer cells, but they did not show any cytotoxicity.  相似文献   

14.
Three new triterpenoid saponins, ardisicrenoside I ( 1 ), ardisicrenoside J ( 2 ), and ardisicrenoside M ( 3 ), along with eight known compounds, were isolated from the roots of Ardisia crenata Sims . Their structures were elucidated as 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 1 ), 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 2 ), 30,30‐dimethoxy‐16‐oxo‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 3 ), ardisiacrispin A ( 4 ), ardisiacrispin B ( 5 ), ardisicrenoside B ( 6 ), ardisicrenoside A ( 7 ), ardisicrenoside H ( 8 ), ardisicrenoside G ( 9 ), cyclamiretin A‐3βOβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 10 ), and cyclamiretin A‐3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 11 ) by means of chemical and spectral analysis, and their cytotoxicities were evaluated in vitro.  相似文献   

15.
The ten new acylated presenegenin (=(2β,3β,4α)‐2,3,27‐trihydroxyolean‐12‐ene‐23,28‐dioic acid) glycosides 1 – 10 have been isolated by successive MPLC from the roots of Polygala myrtifolia L. as five inseparable mixtures of the trans‐ and cis‐4‐methoxycinnamoyl derivatives, i.e., myrtifoliosides A1/A2 ( 1 / 2 ), B1/B2 ( 3 / 4 ), C1/C2 ( 5 / 6 ), D1/D2 ( 7 / 8 ), and E1/E2 ( 9 / 10 ). Their structures were elucidated mainly by extensive spectroscopic experiments, including 2D NMR techniques, as 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oβ‐D ‐galactopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[D ‐apio‐β‐D ‐furanosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[α‐L ‐arabinopyranosyl‐(1→3)]‐4‐O‐(trans‐4methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 1 ) and its cis‐isomer 2 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oβ‐D ‐galactopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[D ‐apio‐β‐D ‐furanosyl‐(1→3)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐(trans‐4methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 3 ) and its cis‐isomer 4 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oβ‐D ‐galactopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐(trans‐4methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 5 ) and its cis‐isomer 6 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐D ‐apio‐β‐D ‐furanosyl‐(1→3)‐O‐[β‐D ‐xylopyranosyl‐(1→4)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)4‐O‐(trans‐4methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 7 ) and its cis‐isomer 8 , and 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→3)‐O‐[β‐D ‐xylopyranosyl‐(1→4)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐(trans‐4 methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 9 ) and its cis‐isomer 10 .  相似文献   

16.
The four new acylated triterpene saponins 1 – 4 , isolated as two pairs of isomers and named libericosides A1/A2 and B1/B2, one pair of isomers 5 / 6 , the (Z)‐isomer libericoside C2 ( 5 ) being new, one new sucrose ester, atroximoside ( 7 ), and eight known compounds were isolated from the roots of Atroxima liberica by repeated MPLC and VLC on normal and reversed‐phase silica gel. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies (1H‐ and 13C‐NMR, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 1 ) and its (Z)‐isomer 2 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 3 ) and its (Z)‐isomer 4 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(Z)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 5 ), and 3‐O‐[(Z)‐feruloyl]‐β‐D ‐fructofuranosyl α‐D ‐glucopyranoside ( 7 ). Compounds 1 – 6 and the known saponins 8 / 9 were evaluated against the human colon cancer cells HCT 116 and HT‐29 and showed moderate to weak cytotoxicity.  相似文献   

17.
Four novel triterpenoid saponins, Vaccariside B‐E (1–4), were isolated from the seeds of Vaccaria segetalis and their structures were elucidated as 3‐O‐β‐D‐galactopyranosyl‐(1–2)‐β‐D‐glucuronopyranosyl quillaic add 28‐O‐β‐D‐xylopyranosyl‐(1–3)‐α‐L rhamno‐pyranosyl‐(1–2)‐[α‐L‐arabinofura‐nosyl‐(1–3)]‐4‐O‐acetyl‐β‐D)‐fucopyranoside (1), 3‐O‐β‐D‐galactopyranosyl ‐ (1–2) ?3‐O‐acetyl‐β‐D ‐ glucuronopyranosyl quillaic acid 28‐O‐β‐D‐xylopyranosyl‐(1–3)‐α‐L‐rhamnopyra‐nosyl‐(1–2)‐[α‐L‐arabinofuranosyl‐(1–3)]‐4‐O‐acetyl‐β‐D‐fucopyranoside (2), 3‐O‐β‐D‐galactopyranosyl‐(1–2)‐β‐D‐glucuronopyranosyl quillaic add 28‐O‐α‐L‐arabinopyranosyl‐(1–3)‐α‐L‐rhamnopyranosyl‐(1–2)‐[α‐L‐arabinofuranosyl‐(1–3)]‐4‐O‐acetyl‐β‐D‐fucopyranoside (3), 3‐O‐β‐D‐galacto‐pyranosyl‐(1–2)‐[β‐D‐xytopyranosyl‐(1–3)]‐β‐D‐glucurono‐pyranosyl quillaic add 28‐O‐β‐D‐xylopyranosyl‐(1–3)‐α‐L‐rhamnopyranosyl‐(1–2)‐[α‐L‐arabinofuranosyl‐(1–3)]‐4‐O‐acetyl‐β‐D‐fucopyranoside (4), respectively.  相似文献   

18.
Two new xanthone glycosides and six known compounds were isolated from the roots of Pteris multifida. Based on spectroscopic and chemical methods, the structures of the new compounds were elucidated as 1‐hydroxy‐4,7‐dimethoxy‐8‐(3‐methyl‐2‐butenyl)‐6‐O‐α‐L‐rhamnopyranosyl‐(1→2)‐[β‐D‐glucopyranosyl‐(1→3)]‐β‐D‐glucopyranosylxanthone ( 1 ), and 1,3‐dihydroxy‐7‐methoxy‐8‐(3‐methyl‐2‐butenyl)‐6‐O‐α‐L‐rhamnopyranosyl‐(1 →2)‐[β‐D‐glucopyranosyl‐(1→3)]‐β‐D‐glucopyranosylxanthone ( 2 ), respectively.  相似文献   

19.
The five new presenegenin glycosides 1 – 5 were isolated from Securidaca welwitschii, together with one known sucrose diester. Compounds 1 – 4 were obtained as pairs of inseparable (E)/(Z)‐isomers of a 3,4‐dimethoxycinnamoyl derivative, i.e., 1 / 2 and 3 / 4 . Their structures were elucidated mainly by 2D‐NMR techniques and mass spectrometry as 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 1 ) and its (Z)‐isomer 2 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28{Oβ‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐3‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 3 ) and its (Z)‐isomer 4 , and 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐[Oβ‐D ‐galactopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 5 ) (presenegenin=(2β,3β,4α)‐2,3,27‐trihydroxyolean‐12‐ene‐23,28‐dioic acid).  相似文献   

20.
From the stem bark of Tetrapleura tetraptera, two new oleanane‐type saponins, tetrapteroside A 3‐O‐{6‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐hydroxyocta‐2,7‐dienoyl]‐β‐D ‐glucopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐(1 → 4)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐3,27‐dihydroxyoleanolic acid (1), and tetrapteroside B 3‐O‐{ β‐D ‐glucopyranosyl‐(1 → 2)‐6‐O‐[(E)‐feruloyl]‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐(1 → 4)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐3,27‐dihydroxyoleanolic acid (2), were isolated. Further extractions from the roots led to the isolation of four known oleanane‐type saponins. Their structures were elucidated by the combination of mass spectrometry (MS), one and two‐dimensional NMR experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号