首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of dibenzylideneacetones or E,E‐cinnamylidene‐ acetophenones and hydrazine hydrate provided 1‐propionyl derivatives of 5‐aryl‐3‐styryl‐2‐pyrazolines and 3‐aryl‐5‐styryl‐2‐pyrazolines. These unsaturated ketones afforded 1‐(2‐carboxyphenyl) or 1‐(4‐carboxyphenyl) 5‐aryl‐3‐styryl‐2‐pyrazolines and 1‐(4‐carboxyphenyl) derivatives of 3‐aryl‐5‐styryl‐2‐pyrazolines on treatment with (2‐carboxyphenyl)‐hydrazine or (4‐carboxyphenyl)hydrazine in hot acetic acid. Structures of all new 2‐pyrazolines have been elucidated by microanalyses and a combined utilization of various spectroscopic methods.  相似文献   

2.
1‐Acetyl‐ and 1‐propionyl‐2‐pyrazolines 11‐27 have been synthesized by the reaction of (3‐coumarinyl)chalcones 1‐10 with hydrazine in hot acetic acid or propionic acid. While 5‐aryl‐3‐(3‐coumarinyl)‐1‐phenyl‐2‐pyrazolines 28‐35 have been prepared by the reaction of (3‐coumarinyl)chalcones 1,3,5‐10 with phenylhydrazine in hot pyridine. Structures of all new compounds have been elucidated by microanalyses, 1H and 13C nmr spectroscopies.  相似文献   

3.
In explorations of syntheses and chemistry of spiroheterocycles, we found that the reaction of 2‐diazopropane with (E)‐α‐arylidenepyrrolin‐2‐one, (E)‐α‐arylidene‐γ‐butyrolactone, and (E)‐arylidene‐N‐arylsuccinimide derivatives produced spiro‐Δ1‐pyrazolines. The photolysis of Δ1‐pyrazolines has led to cyclopropanes. The structures of the obtained adducts have been assigned by means of spectroscopic measurements. J. Heterocyclic Chem., (2011).  相似文献   

4.
New 3‐aroyl‐4‐(3‐chromonyl)‐2‐pyrazolines have been synthesized by the reaction of 3‐(3‐aryl‐3‐oxo‐propenyl)chromen‐4‐ones and diazomethane. Some of these 2‐pyrazolines have also been N‐acylated with a mixture of anhydrous pyridine and acetic anhydride or propionic anhydride. Structures of all new compounds have been elucidated by elemental analyses, mass spectrometry, ir and nmr spectroscopic measurements.  相似文献   

5.
A novel series of pyrazoline and thiazole derivatives incorporating 2‐pyrazolin‐5‐one moiety were synthesized starting from α,β‐unsaturated ketones under the effect of hydrazine derivatives and thiosemicarbazide. The obtained pyrazolines 4a , 4b were treated with different reagents to afford N‐substituted pyrazolines 5a , 5b , 6a , 6b , 7a , 7b , 8a , 8b . N‐Thiocarbamoyl pyrazolines 12a , 12b were cyclized using phenacyl bromide, 2,3‐dichloroquinoxaline, and monochloroacetic acid afforded the novel pyrazolinyl thiazoles 13a , 13b , 14a , 14b , 15a , 15b , 16a , 16b , 16c , 16d , 16e , 16f . The newly synthesized compounds were characterized by analytical and spectral data.  相似文献   

6.
Aryl‐furyl substituted pyrazolines 2a–c and 4a–c were prepared by the reaction of α,β‐unsaturated carbonyl compounds with hydrazine or phenyl hydrazine. N‐chloroacetyl derivatives 3a–c were obtained by the N‐acetylation of 2a–c . The antibacterial activities of synthesized pyrazolines were examined by employing the disk‐diffusion technique. All synthesized compounds showed antibacterial effects in 1200 μg concentration. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:345–347, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10159  相似文献   

7.
The styryl ketonic Mannich base 2 has been used as a precursor in the synthesis of 2‐pyrazolines having a basic side chain at C‐3 and a phenolic Mannich base at C‐5. Treatment of the bis(styryl ketonic bases) 6a and 8a with phenylhydrazine affords the bis(3‐functionalized 2‐pyrazolines) 7 and 9 . The transamination between the styryl keto base 10 and 4‐aminoantipyrine leads to 12 , which reacts with piperazine to give 13 . N‐Nitrosation of the sec‐Mannich bases 15a – d followed by reductive cyclization affords 2‐pyrazolines 17a – d . The keto base 14b has been used for the synthesis of 2‐pyrazolines having a phenolic Mannich base at C‐3 and its reaction with 3,5‐dimethyl‐1H‐pyrazole affords 23 . The alkylation of 3‐methyl‐1‐phenyl‐2‐pyrazolin‐5‐one with the bis(Mannich base) 25 was investigated.  相似文献   

8.
1‐Acetyl‐, 1‐propionyl‐ and 1‐phenyl‐3,5‐diaryl‐2‐pyrazolines have been synthesized by the reaction of the appropriate α,β‐unsaturated ketones with hydrazine or phenylhydrazine in hot acetic acid or propionic acid. Structures of all new 2‐pyrazolines 16‐40 have been elucidated by microanalyses, 1H and 13C nmr spectroscopies.  相似文献   

9.
2‐(4,5‐Dihydropyrazol‐1‐yl)‐thiazol‐4‐ones ( 2–5 ) have been synthesized starting from 3‐phenyl‐5‐aryl‐1‐thiocarbamoyl‐2‐pyrazolines via [2+3]‐cyclization with 2‐bromopropionic acid, maleic anhydride, N‐arylmaleimides, and aroylacrylic acids. The in vitro anticancer activity of 2a , 3a , 4a , 5b , and 5c were tested by the National Cancer Institute. Compounds 4a , 5b , and 5c demonstrated selective inhibition of leukemia cell lines growth at a single concentration (10?5 M). The screening of antiviral activity for a broad panel of viruses revealed that N‐(4‐methoxyphenyl)‐2‐{2‐[5‐(4‐methoxyphenyl)‐3‐phenyl‐4,5‐dihydropyrazol‐1‐yl]‐4‐oxo‐4,5‐dihydrothiazol‐5‐yl}‐acetamide 4a was highly active against Tacaribe TRVL 11 573 virus strain (EC50 = 0.71 μg/mL, selectivity index = 130).  相似文献   

10.
Novel 2‐pyrazolines were obtained by the cycloaddition of diazomethane to bis(arylsulfonylethenyl)‐sulfones ( 3 ) and 1‐arylsulfonyl‐2‐styrylsulfonylethenes (7). Dehydrogenation of 2‐pyrazolines with chloranil gave pyrazoles.  相似文献   

11.
Hydrazonyl radicals are known for their π‐electronic structures; however, their σ‐electronic structures have not been reported as yet. Herein, we show that readily accessible β,γ‐ and γ,δ‐unsaturated N‐trichloroacetyl and N‐trifluoroacetyl hydrazones can be conveniently converted into hydrazonyl σ radicals, which subsequently undergo 5‐exo‐trig radical cyclization at the N1 or N2 atom to form pyrazolines and azomethine imines, respectively.  相似文献   

12.
Some new 3,5‐diphenyl and 1,3,5‐triphenyl‐2‐pyrazolines derivatives were synthesized by reacting 1,3‐diphenyl‐2‐propen‐1‐ones with hydrazine hydrates and phenyl hydrazine in ethanol. The structural elucidation of the compounds was performed by IR, 1H NMR and elemental analysis. All examined compounds showed appreciable antibacterial activity.  相似文献   

13.
Bis pyrazolines and isoxazolines were prepared by 1,3‐dipolar cycloaddition of benzene‐1,3/1,4‐dicarboxaldehyde dihydrazones and dioximes to 1,3‐diaryl‐prop‐2‐en‐1‐ones. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:379–383, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10169  相似文献   

14.
1,3,5‐Trisubstituted pyrazolines to pyrazoles are carried out efficiently in the presence of new reagents N,N,N′, N′‐tetrabromo‐benzene‐1,3‐disulfonylamine [TBBDA] and N,N′‐dibromo‐N,N′‐1,2‐ethanediylbis‐(p‐toluenesulphonamide) [BNBTS] in solvent‐free conditions with catalytic amounts of SiO2 under microwave irradiation in high yields.  相似文献   

15.
Diorganotin(IV) dipyrazolinates of the type R2Sn(C15H12N2OX)2 [where C15H12N2OX = 3(2′‐Hydroxyphenyl)‐5(4‐X‐phenyl)pyrazoline {where X = H ( a ); CH3 ( b ); OCH3 ( c ); Cl ( d ) and R = Me, Prn and Ph}] have been synthesized by the reaction of R2SnCl2 with sodium salt of pyrazolines in 1:2 molar ratio, in anhydrous benzene. These newly synthesized derivatives have been characterized by elemental analysis (C, H, N, Cl and Sn), molecular weight measurement as well as spectral [IR and multinuclear NMR (1H, 13C and 119Sn)] studies. The bidentate behaviour of the pyrazoline ligands was confirmed by IR, 1H and 13C NMR spectral data. A distorted trans‐octahedral structure around tin(IV) atom for R2Sn(C15H12N2OX)2 has been suggested. The free pyrazoline and diorganotin(IV) dipyrazolinates have also been screened for their antibacterial and antifungal activities. Some diorganotin(IV) dipyrazolinates exhibit higher antibacterial and antifungal effect than free ligand and some of the antibiotics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A series of 1‐acyl‐2‐pyrazoline derivatives derived from nonsteroidal anti‐inflammatory drugs was designed as potential anticancer agents. Synthesis of these compounds was carried out via the condensation reaction of chalcones and acid hydrazides under heating. The methodology did not require the use of any costly reagents or catalysts, and the acid hydrazide reactants were readily prepared from mefenamic acid or ibuprofen. A variety of 1‐acyl‐2‐pyrazolines was prepared in good to excellent yields. An N‐allylidene benzohydrazide intermediate was isolated during the reaction optimization study, the structure of which was confirmed unambiguously by X‐ray single crystal data. A range of N‐allylidene benzohydrazides were also prepared in good yields. Some of the compounds synthesized showed promising cytotoxic activities when tested against HCT‐15 human colon cancer cell line in vitro.  相似文献   

17.
Mixed ligand complexes of Iron(III) with aspartic acid and 3(2′‐hydroxy phenyl)‐5‐(4′‐substituted phenyl) pyrazolines of type [Fe(C4O4NH6)2(C15H12N2OX)] and [Fe(C4O4NH6)(C15H12N2OX)2], where (C4O4NH6) = aspartate, (C15H12N2OX) = deprotonated 3(2′‐hydroxyphenyl)‐5‐(4′‐substituted phenyl) pyrazolines (X = H, CH3, OCH3, Cl), have been synthesized. These newly synthesized derivatives have been physicochemically characterized by elemental analysis (C, H, N, Cl and Fe), magnetic moment data, thermogravimetric analysis, molar conductance, cyclic voltammetry, spectral analysis (UV–visible, IR, far IR and fast atom bombardment mass spectrometry). Scanning electron microscopy, transmission electron microscopy and X‐ray powder diffraction studies have been carried out for powdered samples, which show nanometric particles of these derivatives. Antibacterial and antifungal potential of free pyrazoline and some iron(III) complexes have been evaluated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
An efficient aromatization of 1,3,5‐trisubstituted 2‐pyrazolines to their corresponding pyrazoles has been performed by tricholoroisocyanuric acid [TCCA] under microwave irradiation in excellent yields. It has been observed that the reactions occur more rapidly under microwave irradiation conditions, and the amount of the reagent TCCA consumed is considerably reduced to afford better yields when compared with conventional thermal conditions at the same temperature.  相似文献   

19.
Two polymorphs of (E,E)‐N,N′‐bis(4‐nitrobenzylidene)benzene‐1,4‐diamine, C20H14N4O4, (I), have been identified. In each case, the molecule lies across a crystallographic inversion centre. The supramolecular structure of the first polymorph, (I‐1), features stacking based on π–π interactions assisted by weak hydrogen bonds involving the nitro groups. The second polymorph, (I‐2), displays a perpendicular arrangement of molecules linked via the nitro groups, combined with weak C—H...O hydrogen bonds. Both crystal structures are compared with that of the carbon analogue (E,E)‐1,4‐bis[2‐(4‐nitrophenyl)ethenyl]benzene, (II).  相似文献   

20.
New 4‐aryl‐2,3‐dihydro‐2‐styryl‐1,5‐benzothiazepines 8–13 have been synthesized by an acid catalyzed reaction of 2‐arninothiophenol ( 1 ) and (E,E)‐cinnamylideneacetophenones 2–7. Ring contraction of 1,5‐benzothiazepines 8–13 provided 2,2‐disubstituted 3‐acetyl‐2,3‐dihydrobenzothiazoles 14–19 under acetylating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号