首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The 5,6,7,8,9,10‐hexahydro‐2‐methylthiopyrimido[4,5‐b]quinolines 4a , 4b , 4c , 4d , 5a , 5b , 5c , 5d and their oxidized forms 6a , 6b , 6c , 6d , 7a , 7b , 7c , 7d were obtained from the reaction of 6‐amino‐2‐(methylthio)pyrimidin‐4(3H)‐one 2 or 6‐amino‐3‐methyl‐2‐(methylthio)pyrimidin‐4(3H)‐one 3 and α,β‐unsaturated ketones 1a , 1b , 1c , 1d using BF3.OEt2 as catalyst and p‐chloranil as oxidizing agent. Some of the new compounds were evaluated in the US National Cancer Institute (NCI), where compound 5a presented remarkable activity against 46 cancer cell lines, with the most important GI50 values ranging from 0.72 to 18.4 μM from in vitro assays.  相似文献   

2.
A series of eleven novel 2,6‐diamino‐5‐[(2‐substituted phenylamino)ethyl]pyrimidin‐4(3H)‐one derivatives were synthesized as potential inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The synthesis of analogues 2a‐f, 3a and 3e was achieved via an improved method. Commercially available anilines 12a‐f were used as starting materials which on reaction with chloroacetaldehyde followed by cyanoacetate and cyclocondensation with guanidine afforded 2,6‐diamino‐5‐[(2‐substituted phenylamino)ethyl]pyrimidin‐4(3H)‐one 2a‐f in three steps. The N‐methyl analogues 3a‐3e were prepared by reductive methylation. These compounds were evaluated against dihydrofolate reductase from Escherichia coli, Toxoplasma gondii, Pneumocystis carinii, human, and rat liver. Few compounds were marginally active against dihydrofolate reductase. The most potent inhibitor, ( 2c ) which has a 1‐naphthyl substituent on the side chain, has an IC50 = 150 μM and 9.1 μM against Escherichia coli and Toxoplasma gondii DHFR, respectively.  相似文献   

3.
The 1‐hydrazinocarbonylmethyl‐4‐quinolone‐3‐carboxylate ( 10 ) was converted into the 1‐(4‐amino‐1,2,4‐triazol‐3‐ylmethyl)‐4‐quinolone‐3‐carboxylic acid ( 13 ), whose reaction with arylcarbaldehydes gave the 1‐(4‐arylmethyleneamino‐1,2,4‐triazol‐3‐ylmethyl)‐4‐quinolone‐3‐carboxylic acids ( 5a , 5b , 5c , 5d , 5e , 5f , 5g ). Compound 10 was also transformed into the 1‐(4‐amino‐1,2,4‐triazol‐3‐ylmethyl)‐4‐quinolone‐3‐carbohydrazide ( 15 ), whose reaction with phenyl isocyanate or phenyl isothiocyanate afforded the 4‐phenyl‐1‐(1‐triazolylmethyl‐4‐quinolon‐3‐ylcarbonyl)semicarbazide ( 6a ) or 4‐phenyl‐1‐(1‐triazolylmethyl‐4‐quinolon‐3‐ylcarbonyl)thiosemicarbazide ( 6b ), respectively. Compounds 6a , 6b showed the in vitro antimalarial activity to chloroquine‐resistant Plasmodium falciparum, wherein their IC50 was 3.89 and 3.91 μM, respectively.  相似文献   

4.
Some 4‐anilinofuro[2,3‐b]quinoline derivatives were synthesized from dictamnine, a natural alkaloid, and evaluated for their cytotoxicity in the NCI's full panel of 60 human cancer cell lines derived from nine cancer cell types, including leukemia, non‐small‐cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer, and breast cancer. 1‐[4‐(Furo[2,3‐b]quinolin‐4‐ylamino)phenyl]ethanone ( 5 ) (mean GI50=0.025 μM ), bearing an 4‐acetylanilino substituent at C(4) of furo[2,3‐b]quinoline, was more active than its 3‐acetylanilino counterpart 7 (mean GI50=5.27 μM ), and both clinically used anticancer drugs, N‐[4‐(acridin‐9‐ylamino)‐3‐methoxyphenyl]methanesulfonamide (m‐AMSA; mean GI50=0.44 μM ) and daunomycin (mean GI50=0.044 μM ). Compound 5 was capable of inhibiting all types of cancer cells tested with a mean GI50 of less than 0.04 μM in each case except for the non‐small‐cell lung cancer (average GI50=1.75 μM ). Although non‐small‐cell lung cancer is resistant to compound 5 , the sensitivity within this type of cancer cells varies: HOP‐62 (GI50<0.01 μM ), NCI‐H460 (GI50=0.01 μM ), and NCI‐H522 (GI50<0.01 μM ) are very sensitive, while HOP‐92 (GI50 = 12.4 μM ) is resistant. Among these non‐small‐cell lung cancers, NCI‐H522 was found to be very sensitive to 5, 8a , and 8b with a GI50 values of <0.01, 0.074, and <0.01 μM , respectively.  相似文献   

5.
A series of N‐(3‐amino‐3,4‐dihydro‐4‐oxopyrimidin‐2‐yl)‐4‐chloro‐2‐mercapto‐5‐methylbenzenesulfonamide derivatives 10‐17 have been synthesized as potential anti‐HIV agents. The in vitro anti‐HIV‐1 activity of these compounds has been tested at the national Cancer Institute (Bethesda, MD), and the structure‐activity relationships are discussed. The selected N‐[3‐amino‐3,4‐dihydro‐6‐(tert‐butyl)‐4‐oxothieno[2,3‐e]pyrimidin‐2‐yl]‐4‐chloro‐2‐metcapto‐5‐methylbenzenesulfonamide ( 14 ) showed good anti‐HIV‐1 activity with 50% effective concentration (EC50) value of 15 μM and weak cytotoxic effect (IC50 = 106 μM).  相似文献   

6.
In our continuing search for potential anticancer candidates, 2‐(3‐methoxyphenyl)‐6‐pyrrolidinyl‐4‐quinazolinone ( JJC‐1 ) was selected as the lead compound. Starting 5‐pyrrolidinyl‐2‐aminobenzamide was prepared using standard methodology from 5‐chloro‐2‐nitrobenzoic acid by reaction with SOCl2, NH3, pyrrolidine, and H2. The starting benzamide then was reacted with 2‐substituted benzaldehyde or benzoyl chloride in N,N‐dimethylacetamide (DMAC) in the presence of NaHSO3 at 150 °C. Thermal cyclodehydration/dehydrogenation gave the target 6‐pyrrolidinyl‐2‐(2‐substituted phenyl)‐4‐quinazolinones ( 15–22 ). These target compounds were assayed for their cytotoxicity in vitro against six cancer cell lines, including human monocytic leukemia cells (U937), mouse monocytic leukemia cells (WEHI‐3), human hepatoma cells (HepG2, Hep3B) and human lung carcinoma cells (A549, CH27). Most of them exhibited significant cytotoxic effect toward U937 and WEHI‐3 cells, with EC50 values ranging from 0.30 to 10.10 μM. Compound 19 was investigated further for its action mechanisms. Preliminary findings indicated that compound 19 induced G2/M arrest and apoptosis on U937 cells.  相似文献   

7.
X‐Ray‐diffraction analysis of tBu2CN SCl ( 4b ) revealed an almost linear CNS unit with an SN bond order of ca. 1.9 (Fig. 1), in agreement with the structure of a 1‐thia‐2‐azoniaallene chloride. With SCl2 and SbCl5, compound 4b was transformed into the imidosulfurous dichloride 6 (Scheme 2). With morpholine, compounds 4b and 6 afforded the sulfenamide 7 and the aminosulfonium salt 8 , respectively. The (diarylmethylene)amidosulfenyl chlorides 4g , h , i reacted with SbCl5 to give SbCl salts of the 1,2‐benzisothiazoles 9a , b , d , most likely via 1‐thia‐2‐azoniaallene intermediates 2 (Scheme 3).  相似文献   

8.
A series of novel N‐aryl‐4‐(tert‐butyl)‐5‐(1H‐1,2,4‐triazol‐1‐yl)thiazol‐2‐amines synthesized in a green way. H2O2‐NaBr Brominating circulatory system was used in the synthesis of the key intermediate in a mild condition. All of the target compounds were confirmed by 1H NMR and elemental analysis and tested for their cytotoxicity against two different human cancer cell lines. The cytotoxicity assay revealed that some of the title compounds showed moderate to strong cytotoxic activities. Compound 2i was the most potent compound with the IC50 values of 9 μM against Hela cells and 15 μM against Bel–7402 cells, respectively.  相似文献   

9.
The isomeric 2‐substituted‐7(5)‐methyl‐2,3‐dihydro‐5(7)H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b and 7‐ones 2a‐b,7a were synthesized by cyclocondensation from the 5‐substituted‐2‐amino‐2‐oxazolines 1a‐b with biselectrophiles. In boiling ethanol, the reaction of 1a‐b with acetylenic esters led to a mixture of 2a‐b,7a with a small amount of (E)‐2‐N‐(2‐ethoxycarbonylethylene)‐5‐substituted‐2‐iminooxazolines 5a‐b . The ring annulation between 1a‐b and diketene gave the 2‐substituted‐7‐hydroxy‐7‐methyl‐2,3,6,7‐tetrahydro‐5H‐oxazolo[3,2‐ a ]pyrimidin‐5‐ones 4a‐b which can be easily dehydrated to provide the 2‐substituted‐7‐methyl‐2,3‐dihydro‐5H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b .  相似文献   

10.
A series of new 2‐substituted 3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones 8 were synthesized via an aza‐Wittig reaction. Phosphoranylideneamino derivatives 6a or 6b reacted with 4‐chlorophenyl isocyanate to give carbodiimide derivatives 7a or 7b , respectively, which were further treated with amines or phenols to give compounds 8 in the presence of a catalytic amount of EtONa or K2CO3. The structure of 2‐(4‐chlorophenoxy)‐3‐(4‐chlorophenyl)‐5,8,9‐trimethylthieno[3′,2′: 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐one ( 8j ) was comfirmed by X‐ray analysis.  相似文献   

11.
Chloro, fluoro, and nitro derivatives of 7‐amino‐5‐aryl‐6‐cyano‐5H‐pyrano pyrimidin‐2,4‐diones were produced by reacting malononitrile, barbituric acid, and aromatic aldehydes together with a DABCO catalyst in an aqueous one‐pot reaction. This is the first report of these compounds being synthesized with DABCO as a catalyst, which produced the compounds in yields in excess of 90%. The 2,4‐difluoro derivative ( 11 ) was novel. The structures of the synthesized compounds were elucidated by means of 1H, 13C, and 2D NMR spectroscopy. Compound 2 (2‐Cl derivative) had MBC values of <200μM against both Staphylococcus aureus and MRSA, and the 2‐nitro derivative 5 had an MBC of 191μM against the Gram–ve Escherichia coli. The synthesized compounds were also tested for their anticancer activity against a HeLa cell line, where all the compounds showed better activity (IC50 values between 129μM and 340μM) than 5‐fluorouracil, a commonly known anticancer drug.  相似文献   

12.
A series of seven nonclassical 2‐amino‐4‐oxo‐6‐substituted thieno[2,3‐d]pyrimidines 2‐8 and one classical N‐[4‐(2‐amino‐4‐oxo‐3,4‐dihydrothieno[2,3‐d]pyrimidin‐6‐ylmethyl)benzoyl]‐L‐glutamic acid 9 (Table I) were designed as the first in a series of 6‐substituted 6‐5 fused ring analogs as potential thymidylate synthase (TS) inhibitors and as antitumor agents. The target compounds were synthesized via a Heck coupling of appropriately substituted iodobenzenes and allyl alcohol followed by cyclization using cyanoacetate and sulfur powder to afford substituted thiophenes. The resulting thiophenes were then cyclocondensed with chloroformamidine hydrochloride to afford 2‐amino‐4‐oxo‐6‐substituted thieno[2,3‐d]pyrimidines 2‐8 and 26 . Hydrolysis of 26 followed by coupling with diethyl L‐glutamate afforded 28 . The classical analog 9 was obtained by hydrolysis of 28 . None of the target compounds inhibited human recombinant thymidylate synthase at 23 μm except 9 for which the IC50 value was 100 μm.  相似文献   

13.
Tandem aza‐Wittig reaction of iminophosphorane with 1, 4‐phenylene diisocyanate followed by intramolecular heteroconjugate addition annulation after addition of a nucleophilic reagent (amine, phenol, and alcohol), in the presence of catalytic K2CO3 or NaOR, gives selectively the functionalized substituted 2, 2′‐di(alkylamino, aryloxy)‐3, 3′‐(1, 4‐phenylene)bis(thieno[3, 2‐d]pyrimidin‐4(3H)‐ones) and 2, 2′‐di(alkylamino or alkoxy)‐3, 3′‐(1, 4‐phenylene)bis(3, 5, 6, 7‐tetrahydro‐4H‐cyclopenta[4, 5]thieno[2, 3‐d]pyrimidin‐4‐ones).  相似文献   

14.
Ethyl 3‐amino‐4‐chlorothieno[3,2‐c]quinoline‐2‐carboxylate ( 4 ) is a versatile synthon, prepared by reacting an equimolar amount of 2,4‐dichloroquinoline‐3‐carbonitrile ( 1 ) with ethyl mercaptoacetate ( 2 ). Ethyl 5‐alkyl‐5H‐1‐thia‐3,5,6‐triazaaceanfhrylene‐2‐carboxylates 9a‐c , novel perianellated tetracyclic heteroaro‐matics, were prepared by refluxing 4 with excess of primary amines 7a‐c to yield the corresponding amino‐thieno[3,2‐c]quinolines 8a‐c . Subsequent reaction with an excess of triethyl orthoformate (TEO) furnished 9a‐c . Reaction of 4 with TEO in Ac2O at reflux, gave the simple acetylated compounds, thieno[3,2‐c]‐quinolines 12 and 13 . Refluxing 4 with benzylamine ( 7d ) gave 10 , and subsequent treatment with TEO gave the tetracyclic compound 11 . Refluxing 13 with an excess of alkylamines 7a‐d gave the fhieno[3,2‐c]quino‐lines 15 . Refluxing the aminothienoquinolines 8b with an excess of triethyl orthoacetate gave thieno[3,2‐c]quinoline 17 , while heating with Ac2O gave 18 and 19 , with small amounts of 16 . Reaction of 8a,b with ethyl chloroformate and phenylisothiocyanate generated the new 1‐thia‐3,5,6‐triazaaceanthrylenes 20a,b and 21a,b , respectively. Diazotization of 8a‐c afforded the novel tetracyclic ethyl 5‐alkyl‐5H‐1‐fhia‐3,4,5,6‐tetraazaaceanthrylene‐2‐carboxylates 22a‐c in good yields.  相似文献   

15.
The syntheses of N7‐glycosylated 9‐deazaguanine 1a as well as of its 9‐bromo and 9‐iodo derivatives 1b , c are described. The regioselective 9‐halogenation with N‐bromosuccinimide (NBS) and N‐iodosuccinimide (NIS) was accomplished at the protected nucleobase 4a (2‐{[(dimethylamino)methylidene]amino}‐3,5‐dihydro‐3‐[(pivaloyloxy)methyl]‐4H‐pyrrolo[3,2‐d]pyrimidin‐4‐one). Nucleobase‐anion glycosylation of 4a – c with 2‐deoxy‐3,5‐di‐O‐(p‐toluoyl)‐α‐D ‐erythro‐pentofuranosyl chloride ( 5 ) furnished the fully protected intermediates 6a – c (Scheme 2). They were deprotected with 0.01M NaOMe yielding the sugar‐deprotected derivatives 8a – c (Scheme 3). At higher concentrations (0.1M NaOMe), also the pivaloyloxymethyl group was removed to give 7a – c , while conc. aq. NH3 solution furnished the nucleosides 1a – c . In D2O, the sugar conformation was always biased towards S (67–61%).  相似文献   

16.
[2‐Alkylthio‐6‐methyl‐4‐oxopyrimidin‐3(4H)‐yl]acetonitriles ( 3‐5 ) treated with sodium methoxide in methanol followed by ammonium chloride were cyclized to 2‐imino‐7‐methyl‐2,3‐dihydroimidazo[1,2‐a]‐pyrimidin‐5(1H)‐ones ( 6‐8 ). Under acid or base‐catalyzed hydrolysis they were converted to 7‐methyl‐imidazo[1,2‐a]pyrimidine‐2,5‐[1H,3H]‐diones ( 9‐11 ), whereas in the reaction with butyl‐ or benzylamine the corresponding 7‐methyl‐2‐(substitutedamino)imidazo[1,2‐a]pyrimidin‐5(3H)‐ones ( 13‐18 ) were produced. The latter were found to exist in two tautomeric forms in CDCl3 solution.  相似文献   

17.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

18.
The 4‐quinolone‐2‐carbohydrazide 6a was converted into 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e , 1‐aryl‐3‐(4‐quinolon‐2‐yl)imidazolidine‐2,4‐diones 9a , 9b , and N‐(4‐quinolon‐2‐yl)carbamates 10a , 10b via 4‐quinolone‐2‐carbonylazide 7a . The 4‐methoxyquinoline‐2‐carbohydrazide 6b was also transformed into 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)ureas 11a , 11b , 11c , 11d , 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)imidazolidine‐2,4‐diones 12a , 12b , and N‐(4‐methoxyquinolin‐2‐yl)carbamates 13a , 13b via 4‐methoxyquinoline‐2‐carbonylazide 7b . Some of the 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e showed the in vitro antimalarial activity to chloroquine‐resistant Plasmodium falciparum, wherein IC50 was 0.93 to 4.00 μM.  相似文献   

19.
The synthesis of four previously undescribed 2,4‐diaminopyrido[2,3‐d]pyrimidines ( 3,4 ) and 2,4‐diaminoquinazolines ( 5,6 ) with a bulky tricyclic aromatic group at the 6‐position is described. Condensation of dibenz[b,f]azepine with 2,4‐diamino‐6‐bromomethylpyrido[2,3‐d]pyrimidine ( 8 ) and 2,4‐diamino‐6‐bromomethylquinazoline ( 17 ) in the presence of sodium hydride afforded N‐[(2,4‐diaminopyrido[2,3‐d]‐pyrimidin‐6‐yl)methyl]dibenz[b,f]azepine ( 3 ) and N‐[(2,4‐diaminoquinazolin‐6‐yl)methyl]dibenz[b,f]‐azepine ( 4 ), respectively. Condensation of 5‐chlorodibenzo[a,d]cycloheptene ( 19 ) and 5‐chloro‐10,11‐dihydrodibenzo[a,d]cycloheptene ( 20 ) with 2,4,6‐triaminoquinazoline ( 13 ) afforded 5‐[(2,4‐diamino‐quinazolin‐6‐yl)amino]‐5H‐dibenzo[a,d]cycloheptene ( 5 ) and the corresponding 10,11‐dihydro derivative ( 6 ), respectively. The bromides 8 and 17 , as hydrobromic acid salts, were obtained from the corresponding nitriles according to a standard three‐step sequence consisting of treatment with Raney nickel in formic acid followed by reduction with sodium borohydride and bromination with dry hydrogen bromide in glacial acetic acid. Compounds 3–6 were evaluated in vitro for the ability to inhibit dihydrofolate reductase from Pneumocystis carinii, Toxoplasma gondii, Mycobacterium avium, and rat liver. Compounds 3 and 4 were potent inhibitors of all four enzymes, with IC50 values in the 0.03–0.1 μM range, whereas 5 was less potent. However the selectivity of all four compounds for the parasite enzymes relative to the rat enzyme was<10‐fold, whereas the recently reported lead compound in this series, N‐[(2,4‐diaminopteridin‐6‐yl)methyl]dibenz[b,f]azepine ( 1 ) has > 100‐fold selectivity for the T. gondii and M. avium enzyme and 21‐fold selectivity for the P carinii enzyme.  相似文献   

20.
New complexes [(η6p‐cymene)Ru(C5H4N‐2‐CH=N–Ar)X]PF6 [X = Br ( 1 ), I ( 2 ); Ar = 4‐fluorophenyl ( a ), 4‐chlorophenyl ( b ), 4‐bromophenyl ( c ), 4‐iodophenyl ( d ), 2,5‐dichlorophenyl ( e )] were prepared, as well as 3a – 3e (X = Cl) and the new complexes [(η6‐arene)RuCl(N‐N)]PF6 (arene = C6H5OCH2CH2OH, N‐N = 2,2′‐bipyridine ( 4 ), 2,6‐(dimethylphenyl)‐pyridin‐2‐yl‐methylene amine ( 5 ), 2,6‐(diisopropylphenyl)‐pyridin‐2‐yl‐methylene amine ( 6 ); arene = p‐cymene, N‐N = 4‐(aminophenyl)‐pyridin‐2‐yl‐methylene amine ( 7 )]. X‐ray diffraction studies were performed for 1a , 1b , 1c , 1d , 2b , 5 , and 7 . Cytotoxicities of 1a – 1d and 2 were established versus human cancer cells epithelial colorectal adenocarcinoma (Caco‐2) (IC50: 35.8–631.0 μM), breast adenocarcinoma (MCF7) (IC50: 36.3–128.8.0 μM), and hepatocellular carcinoma (HepG2) (IC50: 60.6–439.8 μM), 3a – 3e were tested against HepG2 and Caco‐2, and 4 – 7 were tested against Caco‐2. 1 – 7 were tested against non‐cancerous human epithelial kidney cells. 1 and 2 were more selective towards tumor cells than the anticancer drug 5‐fluorouracil (5‐FU), but 3a – 3e (X = Cl) were not selective. 1 and 2 had good activity against MCF7, some with lower IC50 than 5‐FU. Complexes with X = Br or I had moderate activity against Caco‐2 and HepG2, but those with Cl were inactive. Antibacterial activities of 1a , 2b , 3a , and 7 were tested against antibacterial susceptible and resistant Gram‐negative and ‐positive bacteria. 1a , 2b , and 3a showed activity against methicillin‐resistant S. aureus (MIC = 31–2000 μg · mL–1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号