首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1H‐19F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1H detection, plus both 1H?13C cross polarization and 1H?19F cross polarization detection schemes. This 1H‐19F REDOR‐filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR‐based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR‐filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.  相似文献   

2.
The complete and unambiguous 1H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive 1H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO‐d6 were obtained through the examination of 1D 1H NMR and 2D 1H,1H‐COSY data, in combination with 1H iterative full spin analysis (HiFSA). The computational analysis of discrete spin systems allowed a detailed characterization of all the 1H NMR signals in terms of chemical shifts (δH) and spin‐spin coupling constants (JHH), regardless of signal overlap and higher order coupling effects. The capability of the HiFSA‐generated 1H fingerprints to reproduce experimental 1H NMR spectra at different field strengths was also evaluated. As a result of this analysis, a revised set of 1H NMR parameters for all ten phytoconstituents was assembled. Furthermore, precise 1H NMR assignments of the sugar moieties of isoquercetin and rutin are reported for the first time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The thermodynamic products (ε‐lactams) of the degradation of ten different spirocyclic oxaziridines were analyzed by 1H and 13C NMR spectroscopy. The preferred conformations were determined by examining the homonuclear spin–spin coupling constant and the chemical shift effects of the N‐substituent and the alkyl group of the aliphatic ring on 1H and 13C NMR spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

5.
Dissolution dynamic nuclear polarization (DNP) enables high‐sensitivity solution‐phase NMR experiments on long‐lived nuclear spin species such as 15N and 13C. This report explores certain features arising in solution‐state 1H NMR upon polarizing low‐γ nuclear species. Following solid‐state hyperpolarization of both 13C and 1H, solution‐phase 1H NMR experiments on dissolved samples revealed transient effects, whereby peaks arising from protons bonded to the naturally occurring 13C nuclei appeared larger than the typically dominant 12C‐bonded 1H resonances. This enhancement of the satellite peaks was examined in detail with respect to a variety of mechanisms that could potentially explain this observation. Both two‐ and three‐spin phenomena active in the solid state could lead to this kind of effect; still, experimental observations revealed that the enhancement originates from 13C→1H polarization‐transfer processes active in the liquid state. Kinetic equations based on modified heteronuclear cross‐relaxation models were examined, and found to well describe the distinct patterns of growth and decay shown by the 13C‐bound 1H NMR satellite resonances. The dynamics of these novel cross‐relaxation phenomena were determined, and their potential usefulness as tools for investigating hyperpolarized ensembles and for obtaining enhanced‐sensitivity 1H NMR traces was explored.  相似文献   

6.
Herein, we describe the synthesis and complete assignment of the 1H and 13C NMR chemical shifts of a series of antimicrobial 4‐arylamino‐3‐nitrocoumarin derivatives based on a combination of 1H and 13C NMR, 1H‐1H‐COSY, NOESY, HSQC and HMBC experiments. Conformational effects upon the chemical shifts of the coumarin moiety arising from the anisotropy of the aryl side group are briefly discussed. This study provides the first complete and fully assigned NMR data for this important group of antimicrobial compounds and bridges the gap existing in the literature with regard to NMR structural data for 4‐arylamino‐3‐nitrocoumarins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
NMR spectroscopy is a very important and useful method for the structural analysis of oligosaccharides, despite its low sensitivity. We first applied conventional measuring methods, 2D DQF COSY, 1H–13C HSQC, and 1H–13C HMBC, and also the Double Pulsed Field Gradient Spin Echo (DPFGSE)‐TOCSY and DPFGSE‐NOESY/ROESY techniques to analyze a branched mannose pentasaccharide as a model of high mannose type N‐glycans in natural abundance. The NMR spectra of the model compound are very complex and difficult to analyze owing to overlapping signals. The superior selective irradiation capability of the DPFGSE technique is useful for fine structural and conformational analyses of such complex oligosaccharides. We here introduce a novel technique called DPFGSE‐Double‐Selective Population Transfer (SPT)‐Difference and DPFGSE‐NOE/ROE‐SPT‐Difference spectroscopy. The DPFGSE‐Double‐SPT‐Difference method involves irradiation of two peaks from one proton and the subtraction of higher and lower peaks from each spectrum. The DPFGSE‐NOE/ROE‐SPT‐Difference method involves the transfer of the magnetization polarized by NOE/ROE from the nuclei to the spin‐coupled nuclei through scalar spin–spin interaction using the SPT method. Even if the signals in the NMR spectra overlap, each signal can be accurately assigned. In particular, DPFGSE‐NOE/ROE‐SPT‐Difference is very useful for identifying sugar connectivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
For asymmetric guest molecules in urea, the end‐groups of two adjacent guest molecules may arrange in three different ways: head–head, head–tail and tail–tail. Solid‐state 1H and 13C NMR spectroscopy is used to study the structural properties of 1‐bromodecane in urea. It is found that the end groups of the guest molecules are randomly arranged. The dynamic characteristics of 1‐bromodecane in urea inclusion compounds are probed by variable‐temperature solid‐state 2H NMR spectroscopy (line shapes, spin–spin relaxation: T2, spin‐lattice relaxation: T1Z and T1Q) between 120 K and room temperature. The comparison between the simulation and experimental data shows that the dynamic properties of the guest molecules can be described in a quantitative way using a non‐degenerate three‐site jump process in the low‐temperature phase and a degenerate three‐site jump in the high‐temperature phase, in combination with the small‐angle wobbling motion. The kinetic parameters can be derived from the simulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Specific spin labeling allows the site-selective investigation of biomolecules by EPR and DNP enhanced NMR spectroscopy. A novel spin labeling strategy for commercially available Fmoc-amino acids is developed. In this approach, the PROXYL spin label is covalently attached to the hydroxyl side chain of three amino acids hydroxyproline (Hyp), serine (Ser) and tyrosine (Tyr) by a simple three-step synthesis route. The obtained PROXYL containing building-blocks are N-terminally protected by the Fmoc-protection group, which makes them applicable for the use in solid-phase peptide synthesis (SPPS). This approach allows the insertion of the spin label at any desired position during SPPS, which makes it more versatile than the widely used post synthetic spin labeling strategies. For the final building-blocks, the radical activity is proven by EPR. DNP enhanced solid-state NMR experiments employing these building-blocks in a TCE solution show enhancement factors of up to 26 for 1H and 13C (1H→13C cross-polarization). To proof the viability of the presented building-blocks for insertion of the spin label during SPPS the penta-peptide Acetyl-Gly-Ser(PROXYL)-Gly-Gly-Gly was synthesized employing the spin labeled Ser building-block. This peptide could successfully be isolated and the spin label activity proved by EPR and DNP NMR measurements, showing enhancement factors of 12.1±0.1 for 1H and 13.9±0.5 for 13C (direct polarization).  相似文献   

10.
NMR spectroscopic studies are undertaken with derivatives of 2‐pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H; 15N,1H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of 13C,1H spin coupling constants is accomplished by 2D (δ,J) long‐range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3‐hydroxy‐2‐pyrazinecarboxylic acid are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Various [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐thiones were synthesized in high yields by treatment of the corresponding [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐ones with Lawesson's reagent. Detailed NMR spectroscopic studies were undertaken of the title compounds. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H) was achieved by the combined application of various one‐ and two‐dimensional (1D and 2D) NMR spectroscopic techniques. Unequivocal mapping of most 13C,1H spin coupling constants is accomplished by 2D (δ, J) long‐range INEPT spectra with selective excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

13.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

14.
Characterization of the Protons in Polycrystalline Paratungstates using 1H MAS NMR Investigations 1H MAS NMR experiments are used to characterize the non‐acid protons of the anions in polycrystalline paratungstates by means of the measured isotropic chemical shift values. The investigation of various hydrates of ammonium paratungstate allows a direct proof of protons in NH4 ions and in water molecules while protons of the anions are not detectable. However, for both the potassium and the sodium paratungstates 1H MAS NMR investigations detected the protons of water molecules and the non‐acid protons of the paratungstate anions. Additional 1H broad‐line NMR experiments at 173 K support the interpretation of the results obtained by the 1H MAS NMR investigations. For the NMR signal of the non‐acid protons of the paratungstate anion in the 1H MAS NMR spectra of the potassium salt line‐splitting appears. This refers to the existence of two nonidentical positions of the protons in the crystal lattice and is in agreement with the results of the X‐ray structural analysis.  相似文献   

15.
4‐Methyl‐6,8‐dihydroxy‐7H‐benz[de]anthracen‐7‐one was isolated from the sap of Aloe by column chromatography. Its 1H and 13C NMR spectra were completely assigned by utilizing two‐dimensional 1H‐detected heteronuclear one‐bond (HMQC) and multiple‐bond (HMBC) chemical shift correlation experiments together with 1H–1H COSY and DEPT techniques. These techniques were also valuable in assigning the protons and carbons of those benzanthrone compounds which were previously incompletely reported because of the overlap of proton signals. The molecular structure was elucidated by 2D NMR analysis. The spectral properties (MS, IR and UV) are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Complete assignment of 1H and 13C NMR chemical shifts and J(1H/1H and 1H/19F) coupling constants for 22 1‐phenyl‐1H‐pyrazoles' derivates were performed using the concerted application of 1H 1D and 1H, 13C 2D gs‐HSQC and gs‐HMBC experiments. All 1‐phenyl‐1H‐pyrazoles' derivatives were synthesized as described by Finar and co‐workers. The formylated 1‐phenyl‐1H‐pyrazoles' derivatives were performed under Duff's conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
1H spin–echo NMR spectroscopy of intact cells of C. roseus facilitates monitoring changes inside the cells on treatment with arsenicals. This in situ detection method is non-invasive and non-destructive in comparison to other available biochemical methods. Short term uptake of the arsinicals, methylarsinate MMA and dimethylarsenate DMA, by C. roseus cells that have reached stationary phase in 1-B5 medium, is followed by using NMR spectroscopy, and in particular, the Carr–Purcell–Meiboom–Gill pulse sequence. An increase in the peak height of the methylarsenic resonance over a period of 11 h is indicative of uptake of each arsenical. However, there is no evidence of any biotransformation products in the 1H NMR spectra. The accumulation site of DMA is probably the vacuole as is seen from the change in the chemical shift of DMA as it moves into a compartment of lower pH. Biochemical changes associated with the presence of arsenicals are evident in the 1H NMR spectra of C. roseus cells isolated at different stages in the growth cycle. Although uptake has been demonstrated by other analytical techniques, the resonances corresponding to both MMA and DMA are not observed in the 1H NMR spectra of cells growing in media containing each arsenical. The association of these arsenicals with large biomolecules in the cell may account for these absences. In this event, the spins–spin relaxation time of the arsenic species would shorten and the signals would not be seen in the spin–echo NMR spectrum. In cells growing in the presence of MMA, a new resonance is observed at a chemical shift position 2.2 ppm after 15 days of growth. The shift in position of the resonance, from 1.75 ppm expected at physiological pH, may indicate an altered environment around the arsenic species such as high intracellular acidity.  相似文献   

18.
Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)‐TOCSY‐INEPT, is presented that allows the extraction of 13C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the 1H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled 1H spins, and subsequent relaying of the magnetization from 1H to 13C by direct INEPT transfer to generate 13C NMR subspectra. Simple consolidation of the subspectra yields 13C NMR spectra for individual isomers. Alternatively, CSSF‐INEPT with heteronuclear long‐range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the 13C NMR spectra for isomers containing multiple spin systems. A proof‐of‐principle validation of the CSSF‐TOCSY‐INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF‐TOCSY‐INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The phase structure of a series of ethylene‐vinyl acetate copolymers has been investigated by solid‐state wide‐line 1H NMR and solid‐state high‐resolution 13C NMR spectroscopy. Not only the degree of crystallinity but the relative contents of the monoclinic and orthorhombic crystals within the crystalline region varied with the vinyl acetate (VA) content. Biexponential 13C NMR spin–lattice relaxation behavior was observed for the crystalline region of all samples. The component with longer 13C NMR spin–lattice relaxation time (T1) was attributed to the internal part of the crystalline region, whereas the component with shorter 13C NMR T1 to the mobile crystalline component was located between the noncrystalline region and the internal part of the crystalline region. The content of the mobile crystalline component relative to the internal part of the crystalline region increased with the VA content, showing that the 13C NMR spin–lattice relaxation behavior is closely related to the crystalline structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2199–2207, 2002  相似文献   

20.
An NMR study of one new and several known abietane diterpenes isolated from the roots of Aegiphila lhotzkyana is described. In addition to 1D NMR, several 2D shift‐correlated NMR pulse sequences (1H–1H‐COSY, NOESY, HMQC and HMBC) were used to establish all the structures, and unambiguously perform the 1H and 13C chemical shift assignments of the new natural diterpene and three derivatives, the NMR data for which have not been reported previously. Revision of current data assignment for teuvincenone H is also suggested. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号