首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The detailed kinetics of the reaction of toluidine blue {phenothiazine-5-ium, 3-amino-7(dimethylamino)-2-methyl chloride, tolonium chloride, TB+Cl} with potassium bromate and with aqueous bromine reaction were studied. In most of the experiments, the kinetics were monitored by following the rate of consumption of TB+ at 590 nm with excess acid and bromate. The reaction exhibited complex kinetic behavior. Initial reaction was slow and after an induction time, the TB+ concentration decreased fast. It had first-order dependence on both TB+ and bromate, and second-order dependence on H+. Under excess bromate conditions, the stoichiometric ratio of TB+ to bromate was 1:1. Demethylated sulfoxides were found at the reaction products. Sharp increase in the overall potential synchronized with the increase in bromine levels and the fast depletion of [TB+]. The role of bromide ion and bromine in the reaction was established. A multi-step reaction mechanism is proposed consistent with the experimental results. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 111–120, 1998.  相似文献   

2.
The oxidation of 4‐methyl‐3‐thiosemicarbazide (MTSC) by bromate and bromine was studied in acidic medium. The stoichiometry of the reaction is extremely complex, and is dependent on the ratio of the initial concentrations of the oxidant to reductant. In excess MTSC and after prolonged standing, the stoichiometry was determined to be H3CN(H)CSN(H)NH2 + 3BrO3? → 2CO2 + NH4+ + SO42? + N2 + 3Br? + H+ (A). An interim stoichiometry is also obtained in which one of the CO2 molecules is replaced by HCOOH with an overall stoichiometry of 3H3CN(H)CSN(H)NH2 + 8BrO3? → CO2 + NH4+ + SO42? + HCOOH + N2 + 3Br? + 3H+ (B). Stoichiometry A and B are not very different, and so mixtures of the two were obtained. Compared to other oxidations of thiourea‐based compounds, this reaction is moderately fast and is first order in both bromate and substrate. It is autocatalytic in HOBr. The reaction is characterized by an autocatalytic sigmoidal decay in the consumption of MTSC, while in excess bromate conditions the reaction shows an induction period before autocatalytic formation of bromine. In both cases, oxybromine chemistry, which involves the initial formation of the reactive species HOBr and Br2, is dominant. The reactions of MTSC with both HOBr and Br2 are fast, and so the overall rate of oxidation is dependent upon the rates of formation of these reactive species from bromate. Our proposed mechanism involves the initial cleavage of the C? N bond on the azo‐side of the molecule to release nitrogen and an activated sulfur species that quickly and rapidly rearranges to give a series of thiourea acids. These thiourea acids are then oxidized to the sulfonic acid before cleavage of the C? S bond to give SO42?, CO2, and NH4+. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 237–247, 2002  相似文献   

3.
At bromide concentrations higher than 0.1 M, a second term must be added to the classical rate law of the bromate–bromide reaction that becomes ?d[BrO3?]/dt = [BrO3?][H+]2(k1[Br?] + k2[Br?]2). In perchloric solutions at 25°C, k1 = 2.18 dm3 mol?3 s?1 and k2 = 0.65 dm4 mol?4 s?1 at 1 M ionic strength and k1 = 2.60 dm3 mol3 s?1and k2 = 1.05 dm4 mol?4 s?1 at 2 M ionic strength. A mechanism explaining this rate law, with Br2O2 as key intermediate species, is proposed. Errors that may occur when using the Guggenheim method are discussed. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 17–21, 2007  相似文献   

4.
The major metabolites of the physiologically active compound dimethylthiourea (DMTU), dimethylaminoiminomethansesulfinic acid (DMAIMSA), and dimethylaminoiminomethanesulfonic acid (DMAIMSOA) were synthesized, and their kinetics and mechanisms of oxidation by acidic bromate and aqueous bromine was determined. The oxidation of DMAIMSA is much more facile and rapid as compared to a comparable oxidation by the same reagents of the parent compound, DMTU. The stoichiometry of the bromate-DMAIMSA reaction was determined to be 2BrO 3 (-) + 3NHCH 3(NCH 3)CSO 2H + 3H 2O --> 3SO 4 (2) (-) + 2Br (-) + 3CO(NHCH 3) 2 + 6H (+), with quantitative formation of sulfate. In excess bromate conditions, the stoichiometry was 4BrO 3 (-) + 5NHCH 3(NCH 3)CSO 2H + 3H 2O --> 5SO 4 (2) (-) + 2Br 2 + 5CO(NHCH 3) 2 + 6H (+). The direct bromine-DMAIMSA reaction gave an expected stoichiometric ratio of 2:1 with no further oxidation of product dimethylurea (DMU) by aqueous bromine. The bromine-DMAIMSA reaction was so fast that it was close to diffusion-controlled. Excess bromate conditions delivered a clock reaction behavior with the formation of bromine after an initial quiescent period. DMAIMSOA, on the other hand, was extremely inert to further oxidation in the acidic conditions used for this study. Rate of consumption of DMAIMSA showed a sigmoidal autocatalytic decay. The postulated mechanism involves an initial autocatalytic build-up of bromide that fuels the formation of the reactive oxidizing species HBrO 2 and HOBr through standard oxybromine reactions. The long and weak C-S bond in DMAIMSA ensures that its oxidation goes directly to DMU and sulfate, bypassing inert DMAIMSOA.  相似文献   

5.
Kinetics and mechanism of the reaction between mercuric bromide and silver iodide were studied in the solid state. It has been established that HgBr2 reacts via the gaseous state and that the reaction proceeds through counter diffusion of Ag+ and Hg2+. Thermal and conductivity measurements indicate that the reaction is multistep. X-ray and chemical analyses show that HgBr2 and AgI mixed in different molar ratios give rise to different products. The data for the lateral diffusion fitted the equation Xin = kt, where Xi is the thickness of the product layer at time t, and n and k are constants. Evidence for the formation of solid solutions between reactant and product phases is reported.  相似文献   

6.
Conclusions By studying the kinetics of reaction between 1-lithiuni-2-isqpropyl-o-carborane and C2H5Br and C2H5I, it was found that isopropyl-o-carboranyllithium in an ether-benzene solution is tnonomeric.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2211–2215, October, 1981.  相似文献   

7.
In this subsystem of the classical Belousov-Zhabotinskii oscillatory reaction the minimal set of reactions that still quantitatively reproduces the experimental behavior was suggested and analyzed by numerical simulations. We conclude that the reaction pathway via HOBr plays no role in the bromination of malonic acid.  相似文献   

8.
9.
The kinetics of oxidation of allyl alcohol with potassium bromate in the presence of osmium(VIII) catalyst in aqueous acid medium has been studied under varying conditions. The active species of oxidant and catalyst in the reaction were understood to be Bro3 and H2OsO5, respectively. The autocatalysis exhibited by one of the products, that is, Br, was attributed to complex formation between bromide and osmium(VIII). A composite scheme and rate law were possible. Some reaction constants involved in the mechanism have been evaluated. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 583–589, 1999  相似文献   

10.
Bromocomplex forming metal ions (Tl3+, Hg2+) alter considerably the parameters of chemical oscillations in bromate oscillators. Even at 10–5 M metal ion concentration the period of the oscillation is doubled or tripled; at 10–4 M the oscillation is quenched. At high (10–2 M) Tl3+ concentration, high frequency, strongly damped oscillations occur although [Br]eq is below 10–10 M. By the addition of Tl3+ we could determine the amount of Br formed in a single autocatalytic step, which we found to be about 10–4 M.
(Tl3+, Hg2+), , . 10–5 M , ; 10–4 M . Tl3+ (10–2 M) , [Br]eq 10–10 M. Tl3+ Br, , 10–4 M.
  相似文献   

11.
The kinetics and mechanism of oxidation of tetramethylthiourea (TTTU) by bromine and acidic bromate has been studied in aqueous media. The kinetics of reaction of bromate with TTTU was characterized by an induction period followed by formation of bromine. The reaction stoichiometry was determined to be 4BrO(3)(-) + 3(R)(2)C═S + 3H(2)O → 4Br(-) + 3(R)(2)C═O + 3SO(4)(2-) + 6H(+). For the reaction of TTTU with bromine, a 4:1 stoichiometric ratio of bromine to TTTU was obtained with 4Br(2) + (R)(2)C═S + 5H(2)O → 8Br(-) + SO(4)(2-) + (R)(2)C═O + 10H(+). The oxidation pathway went through the formation of tetramethythiourea sulfenic acid as evidenced by the electrospray ionization mass spectrum of the dynamic reaction solution. This S-oxide was then oxidized to produce tetramethylurea and sulfate as final products of reaction. There was no evidence for the formation of the sulfinic and sulfonic acids in the oxidation pathway. This implicates the sulfoxylate anion as a precursor to formation of sulfate. In aerobic conditions, this anion can unleash a series of genotoxic reactive oxygen species which can explain TTTU's observed toxicity. A bimolecular rate constant of 5.33 ± 0.32 M(-1) s(-1) for the direct reaction of TTTU with bromine was obtained.  相似文献   

12.
The kinetics of the reaction of pentane‐2,4‐dione (HA) with ZrIV has been studied at 25.0°C in an excess lactate (L?) media. The equilibrium reaction was found to be: Zr2L6+HA?HL+Zr2AL5. The equilibrium was approached from either direction and a plausible mechanism has been proposed with kinetic constants, but individual reactivities of the keto and the enol tautomers of pentane‐2,4‐dione could not be apportioned. However, it was found that both the uncatalyzed and acid‐catalyzed paths contribute to the reverse reaction. But 2‐thenoyltrifluoroacetone (HT) forms a stronger chelate with ZrIV, so its reaction with less reactive Zr2L5(OH2) could not be detected; reactivity of the more reactive Zr2L5(OH2)(OH) could be found. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 725–729, 2011  相似文献   

13.
Uncatalyzed and catalyzed oscillatory behavior in the redox potential in the oxidation of 3-alizarin-sulfonic acid sodium salt with acidid (H2SO4) bromate is reported. Optimum and boundary conditions for each reactant exhibiting oscillatory behavior have been studied and a probable mechanism is suggested.
- 3-- (H2SO4) . , .
  相似文献   

14.
Abstarct  The reaction of nickel with benzyl bromide in DMF has been studied. The reaction intermediates were investigated by different methods and the kinetic and thermodynamic parameters were determined. The reaction of benzyl bromide with nickel was shown to occur on the metal surface by the Langmuir-Hinshelwood scheme, with the formation of benzyl radicals which are recombined and isomerized in solution to form 1,2-diphenylethane and trace amounts of 4.4′-dimethylbiphenyl. Original Russian Text ? A.M. Egorov, S.A. Matyukhova, I.S. Kocherova, A.A. Novikova, A.V. Anisimov, 2009, published in Zhurnal Obshchei Khimii, 2009, Vol. 79, No. 3, pp. 455–463.  相似文献   

15.
The kinetics of the O + ICN reaction was studied using a relative rate method, with O + C(2)H(2) as the competing reaction. Carbon monoxide products formed in the competing reaction and subsequent secondary chemistry were detected as a function of reagent ICN pressure to obtain total rate constants for the O + ICN reaction. Analysis of the experimental data yields rate constants of k(1) = (3.7 ± 1.0 to 26.2 ± 4.0) × 10(-14) cm(3) molecule(-1) s(-1) over the total pressure range 1.5-9.5 Torr. Product channel NCO + I, the only bimolecular exothermic channel of the reaction, was investigated by detection of N(2)O in the presence of NO and found to be insignificant. An ab initio calculation of the potential energy surface (PES) of the reaction at the CCSD(T)/CEP-31G//DFT-B3LYP/CEP-31G level of theory was also performed. The pathways leading to bimolecular product channels are kinetically unfavorable. Formation and subsequent stabilization of an ICNO adduct species appears to dominate the reaction, in agreement with the experimentally observed pressure dependent rate constants.  相似文献   

16.
The kinetics of the O + HCNO reaction were investigated by a relative rate technique using infrared diode laser absorption spectroscopy. Laser photolysis (355 nm) of NO2 was used to produce O atoms, followed by O atom reactions with CS2, NO2, and HCNO, and infrared detection of OCS product from the O + CS2 reaction. Analysis of the experiment data yields a rate constant of k1= (9.84 +/- 3.52) x 10-12 exp[(-195 +/- 120)/T)] (cm3 molecule-1 s-1) over the temperature range 298-375 K, with a value of k1 = (5.32 +/- 0.40) x 10-12 cm3 molecule-1 s-1 at 298 K. Infrared detection of product species indicates that CO producing channels, probably CO + NO + H, dominate the reaction.  相似文献   

17.
The reaction of copper with benzyl bromides in hexamethylphosphoramide has been studied. The kinetic and thermodynamic parameters of the reaction have been obtained. Hammett plots of log (k/ko) vs the substituent constant σ gave good correlations (ρ = 0.15, Sρ = 0.02, r = 0.954). The structure of the organic group has little effect on the rate of reaction of benzyl bromide with copper. In the absence of atmospheric oxygen, the oxidative dissolution of copper occurred by the mechanism of single‐electron transfer with the formation of 1,2‐diphenylethane and copper(I) complexes. The stereochemistry and intermediates compound was also investigated. The reaction mechanism is discussed. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 296–305, 2005  相似文献   

18.
The reaction between benzohydrazide and potassium bromate catalyzed by vanadium(IV) was studied under pseudo‐first‐order condition keeping large excess of hydrazide concentration over that of the oxidant. The initiation of the reaction occurs through oxidation of the catalyst vanadium(IV), VO2+, to vanadium(V), VO, which then reacts with hydrazide to give N,N′‐diacylhydrazine and benzoic acid as the products. The order in [H+] is found to be two, and its effect is due to protonation and hydrolysis of oxidized form of the catalyst to form HVO3. The oxidized form of the catalyst, VO, forms a complex with the protonated hydrazide as evidenced by the occurrence of absorption maxima at 390 nm. The rate of the reaction remains unaffected by the increase in the ionic strength. The activation parameters were determined, and data support the mechanism. The detailed mechanism and the rate equation are proposed for the reaction. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 151–159, 2008  相似文献   

19.

Abstract  

The interaction between chromium(III) and picolinic acid in weak acid aqueous solution was studied, resulting in the formation of a complex upon substitution of water molecules in the chromium(III) coordination sphere. Experimental results show that the reaction takes place in multiple steps. The first step is the formation of an ion pair, the second step (two consecutive steps) is the slow one corresponding to substitution of the first water molecule from the chromium aqueous complex coordination sphere by a picolinic acid molecule via oxygen atom of the carboxylic acid group and substitution of the second water molecule via nitrogen of the pyridine ring forming an 1:1 complex. Both consecutive steps were independent of chromium concentration. The rate constants of the 1st and 2nd consecutive steps were increased by increasing picolinic acid concentration. The corresponding activation parameters are ∆H 1obs * = 28.4 ± 4 kJ mol−1, ∆S 1obs * = −202 ± 26 J K−1 mol−1, ∆H 2obs * = 39.6 ± 5 kJ mol−1, and ∆S 2obs * = −175 ± 19 J K−1 mol−1. The third step is fast, corresponding to formation of the final complex [Cr(pic)3]. The logarithms of the formation constants of 1:1 and 1:3 complexes were found to be 1.724 and 4.274, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号