首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrorheological (ER) fluids are composed of dielectric particles dispersed in an inert liquid of low electric permittivity. Upon the application of an electric field ER fluids rapidly solidify, or increase their viscosity. Characteristic increase of the viscosity of ER fluids is due to the formation of particle chains that bridge the electrodes. This process is greatly affected by polarization processes within the solid phase and at the surface of the grains. These phenomena are governed by dopants, functional groups, structure of the solid particles and the solid/liquid interface. To find relations between parameters of the ER effect and material properties of components of ER fluids, two main types of the materials were investigated: conjugated polymers [polyphenylene (PPP), pyrolyzed polyacrylonitrile (PAN) and polythiophene] and solid electrolytes based on polyacrylonitrile complexed with inorganic salts. It was found that the ER activity resulted from surface polarization processes due to the presence of polar species (PAN) or bulk polarization related to mobile ions (PPP). Polythiophene, despite the presence of a conjugated system of multiple bonds, showed only residual ER effect. Solid electrolyte‐based fluids exhibited relatively high activity originated from ionic polarization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
An easy synthetic procedure for soluble poly[3‐(4‐alcoxyphenyl)thiophene]s is reported. The polymers present a high regioregularity degree as determined by both UV–vis spectra and 1H and 13C NMR analysis. Furthermore, X‐ray powder diffraction analysis performed on films of the polymers suggests a π‐stacked packing structure of the macromolecules. Electrical characterization was performed on one of the synthesized polythiophenes on both undoped and doped (with FeCl3 or iodine) films. The conductivity and charge‐carrier mobility were assessed by current–voltage and field effect measurements. Well‐structured polymer films were obtained simply via spin coating from chloroform solutions and without the need of further processing, unlike other regioregular polythiophenes reported in the literature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1758–1770, 2007  相似文献   

3.
Conductive elastomeric blends based on ethylene–propylene–5‐ethylidene–2‐norbornene terpolymer (EPDM) and polyaniline doped with 4‐dodecylbenzenesulfonic acid [PAni(DBSA)] were cast from organic solvents. Functionalization of the elastomer was promoted by grafting with maleic anhydride. Vulcanization conditions were optimized with an oscillating disk rheometer. The conductivity, morphology, thermal stability, compatibility, and mechanical behavior of the obtained mixtures were analyzed by in situ direct current conductivity measurements, atomic force microscopy, transmission electron microscopy, wide‐angle X‐ray scattering, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis, stress–strain and hysteresis tests. The vulcanization process was affected by temperature, the PAni content, and maleic anhydride. A reinforcement effect was promoted by the vulcanizing agent. The formation of links between the high‐molar‐mass phases and oligomers of PAni(DBSA) in the elastomeric matrix enhanced the thermal stability and ultimate properties of the blends. By the appropriate control of the polymer blends' composition, it was possible to produce elastomeric materials with conductivities in the range of 10?5–10?4 S · cm?1 and excellent mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1767–1782, 2004  相似文献   

4.
The synthesis of conjugated polymers 1 – 5 functionalized with 4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione in the backbone is reported and their use in the construction of organic solar cells is demonstrated. Increasing the molar ratio of 2,7‐dibromo‐3,8‐dihexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione, relative to 4,4′‐dihexyl‐5,5′‐dibromo‐2,2′‐bithiophene, in the copolymer synthesis significantly lowers the solubility of these polymers. The incorporation of highly conjugated 3,8‐dihexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione unit into the polymer backbone has been confirmed by UV–vis absorption. The observation of decreasing quantum yield for the emission in the order of 1 , 2 , 3 is consistent with copolymers with different comonomer content. The power conversion efficiencies of solar cells using blends of these polymers with PCBM ([6,6]‐phenyl C61‐butyric acid methyl ester) were determined to be 0.11% for polymer 1 , 0.33% for 2 , and 0.26% for 3 , respectively. Under identical white light illumination, the power conversion efficiency of the device based on polymer 2 /PCBM as the active layer was three times higher compared to that of device based on polymer 1 /PCBM. Owing to the limited solubility and poor film‐forming ability of polymer 3 , the power conversion efficiency of solar cell based on 3 /PCBM blend is lower than that of 2 /PCBM blend, but is still larger than that of 1 /PCBM blend. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2680–2688, 2008  相似文献   

5.
Immiscible polymer blends based on polypropylene/thermoplastic polyurethane (PP/TPU) are interesting host multiphase systems for the incorporation of low concentrations of conductive carbon black (CB) particles. The enhancement of conductivity (and the lower critical CB content for percolation) in the PP/TPU blend is achieved via double percolation, that is, structural and electrical. The CB particles form chainlike network structures within the TPU phase, which exhibit phase continuity of elongated particles within the PP matrix. Moreover, scanning electron microscopy and dynamic mechanical thermal analysis studies indicated that the incorporation of CB particles into the PP/TPU blend has a “compatibilizing” effect, resulting in an enhanced interaction between the two polymers. Extruded PP/TPU/CB filaments produced by a capillary rheometer process at various shear rates were examined as sensing materials for a homologous series of alcohols, that is, methanol, ethanol, and 1‐propanol. All filaments displayed increasing resistance upon exposure to the various alcohols combined with excellent reproducibility and recovery behavior. An attempt is made to identify the dominant mechanisms controlling the sensing process in a CB‐containing immiscible polymer blend characterized by a double‐continuity structure. The interphase region, its quantity, and continuity played a significant role in the liquid‐transport process. Blend composition, filaments' extrusion temperature, and production shear rate level were considered as significant parameters determining the structure and the resultant sensing properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1428–1440, 2003  相似文献   

6.
Electrically conductive blends, containing two immiscible polymers (ethylene vinyl acetate, EVA‐19, and copolyamide 6/6.9, CoPA) and polyaniline (PANI), were produced by melt processing. These blends showed a preferred localization of PANI in the CoPA phase, thus enhancing the formation of continuous conducting networks. Electrically conductive PANI‐containing filaments produced by a capillary rheometer process at various shear rate levels were studied as sensing materials for a homologous series of alcohols (methanol, ethanol and 1‐propanol). All filaments showed a decreasing resistance upon exposure to these solvents. Filaments exposed to methanol, liquid or vapor, exhibited the highest resistance decrease. This behavior was related to the highest polarity of methanol, compared with ethanol and 1‐propanol. The filaments' rate of production significantly affects the relative resistance change upon exposure to the various alcohols and their reproducibility. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A number of series of fluorescent and conducting polymers containing alternating 3-functionalized thienylene/ bithienylene and phenylene/ pyridyl/ biphenylene units were synthesized from a number of central symmetric high oligomers and characterized using UV-Vis, photoluminescence, conductivity measurement, thermal analysis, electrochemistry, XRD and XPS. Structural variation of the polymers was realized by both side chain and polymer backbone modifications. Close structure-property correlation of the polymers was observed. This paper mainly reports the results of two families of them, those substituted by alkyl pendant chains and electro-withdrawing and donating groups.  相似文献   

8.
In this study, four novel silafluorene (SiF) and benzotriazole (Btz) bearing conjugated polymers are synthesized. In the context of electrochemical and optical studies, these polymers are promising materials both for electrochromic device (ECD) and polymer solar cell (PSC) applications. All of the polymers are ambipolar (both p‐ and n‐dopable) and multichromic. Electrochemistry experiments indicate that incorporation of selenophene instead of thiophene unit increases the HOMO energy level of the polymers. Power conversion efficiency of the PSCs reached 1.75% for PTBTSiF, 1.55% for PSBSSiF, 2.57% for PBTBTSiF, and 1.82% for PBSBSSiF. The hole mobilities of the polymers are estimated through space charge limited current (SCLC) model. PBTBTSiF has the highest hole mobility as 2.44 × 10?3 cm2 V s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1541–1547  相似文献   

9.
We synthesized a novel low‐band‐gap, conjugated polymer, poly[4,7‐bis(3′,3′‐diheptyl‐3,4‐propylenedioxythienyl)‐2,1,3‐benzothiadiazole] [poly(heptyl4‐PTBT)], consisting of alternating electron‐rich, diheptyl‐substituted propylene dioxythiophene and electron‐deficient 2,1,3‐benzothiadiazole units, and its photovoltaic properties were investigated. A thin film of poly(heptyl4‐PTBT) exhibited an optical band gap of 1.55 eV. A bulk‐heterojunction solar cell with indium tin oxide/poly(3,4‐ethylenedioxythiophene)/poly(heptyl4‐PTBT): methanofullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) (1:4)/LiF/Al was fabricated with poly(heptyl4‐PTBT) as an electron donor and PCBM as an electron acceptor and showed an open‐circuit voltage, short‐circuit current density, and power conversion efficiency of 0.37 V, 3.15 mA/cm2, and 0.35% under air mass 1.5 (AM1.5G) illumination (100 mW/cm2), respectively. A solid‐state, dye‐sensitized solar cell with a SnO2:F/TiO2/N3 dye/poly(heptyl4‐PTBT)/Pt device was fabricated with poly(heptyl4‐PTBT) as a hole‐transport material. This device exhibited a high power conversion efficiency of 3.1%, which is the highest power conversion efficiency value with hole‐transport materials in dye‐sensitized solar cells to date. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1394–1402, 2007  相似文献   

10.
A series of two‐dimensional donor–acceptor–donor (D1–A(D2)) type of conducting polymers (CPs) all with electroactive bulky side chain structure has been designed, synthesized, and investigated by introducing the donor–acceptor (D1–A) thiophene–quinoxaline moiety in the main chain alongside and additional donor and hole transporting units in the side chain. All the UV‐vis spectra of the 2D polymers, PTPQT, PFPQT, and PCPQT, each with triphenylamine, fluorene, and carbazole units as the D2 side chain, possess strong intramolecular charge transfer absorption, thus resulting in better light harvesting. Their optical and electronic properties were thoroughly explored experimentally and computationally. The effect of molecular weight of the narrow polydispersity polymers on their optoelectronic property was studied in detail. In summary, the 2‐D CPs show potential for use as an active material in optoelectronic devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1217–1227  相似文献   

11.
Various polymeric blends of hole transporting materials, (such as MEH-PPV and P3HT) and electron transporting materials (such as poly(phenyl-vinyl-quinoline) and poly[2-(4-methacryloxyphenyl)-5-phenyl)-1,3,4-oxadiazole]) have been prepared and investigated. Moreover a soluble, main chain oxadiazole bearing polyether has been synthesized, aiming towards an efficient electron transporting polymeric material which was also used for blend preparation together with P3HT. A deeper investigation into their spectroscopic characteristics using, primarily, FT-IR spectroscopy, but also UV-Vis spectroscopy has been conducted. The surface morphology of these blends was investigated using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) in an attempt to gather information for their solid state properties and morphologies. Finally, DSC measurements provided additional insight into the thermal behaviour of these materials.  相似文献   

12.
The precipitation polymerization of aniline in the presence of organic acids, including toluene‐4‐sulfonic acid, phenylphosphonic acid, 4‐aminophenylphosphonic acid, and acetophosphonic acid, led in one step to conductive polyaniline. The polyaniline showed very good affinity for water and was easily modified to be water‐soluble. In comparison with the widely studied postpolymerization of doped polyaniline, this reaction allowed reasonably good conductivity to be achieved at a lower acid/polyaniline ratio. Moreover, the easy in situ incorporation of the dopant into the polymer structure caused high stability of the created salt; that is, no dedoping was observed after it was washed with water, methanol, or other solvents. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3562–3569, 2002  相似文献   

13.
A series of three new low bandgap donor–acceptor–donor–acceptor/ (D–A–D–A/) polymers have been successfully synthesized based on the combination of isoindigo as the electron‐deficient acceptor and 3,4‐ethylenedioxythiophene as the electron‐rich donor, followed by CH‐arylation with different acceptors (4,7‐dibromo[c][1,2,5]‐(oxa, thia, and/or selena)diazole ( 4a‐c )). These polymers were used as donor materials for photovoltaic applications. All of the polymers are highly stable and show good solubility in chlorinated solvents. The highest power conversion efficiency of 1.6% was achieved in the bulk heterojunction photovoltaic device that consisted of poly ((E)?6‐(7‐(benzo‐[c][1,2,5]‐thiadiazol‐4‐yl)?2,3‐dihydrothieno‐[3,4‐b][1,4]dioxin‐5‐yl)?6′‐(2,3‐dihydrothieno‐[3,4‐b][1,4]‐dioxin‐5‐yl)?1,1′‐bis‐(2‐octyldodecyl)‐[3,3′‐biindolinylidene]‐2,2′‐dione) as the donor and PC61BM as the acceptor, with a short‐circuit current density (Jsc) of 8.10 mA/cm2, an open circuit voltage (Voc) of 0.56 V and a fill factor of 35%, which indicates that these polymers are promising donors for polymer solar cell applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2926–2933  相似文献   

14.
Novel polyfluorene copolymers with pendant hydroxyl groups, poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐1,4‐phenylene] (PFP‐OH) and poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐4,7‐(2,1,3‐benzothiadiazole)] (PFBT‐OH) were prepared. Acid‐catalyzed polycondensations of tetraethoxysilane were carried out in the presence of these polymers to obtain homogeneous hybrids. Photoluminescence spectra of these hybrids suggested the polymers were immobilized in silica matrix retaining their π‐conjugated structures. Further, hybrids of coat film were prepared utilizing perhydropolysilazane as a silica precursor. Their optical properties were examined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
We report here the synthesis via Suzuki polymerization of two novel alternating polymers containing 9,9‐dioctylfluorene and electron‐withdrawing 4,4′‐dihexyl‐2,2′‐bithiazole moieties, poly[(4,4′‐dihexyl‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PHBTzF) and poly[(5,5′‐bis(2″‐thienyl)‐4,4′‐dihexyl‐2,2′‐bithiazole‐5″,5″‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PTHBTzTF), and their application to electronic devices. The ultraviolet–visible absorption maxima of films of PHBTzF and PTHBTzTF were 413 and 471 nm, respectively, and the photoluminescence maxima were 513 and 590 nm, respectively. Cyclic voltammetry experiment showed an improvement in the n‐doping stability of the polymers and a reduction of their lowest unoccupied molecular orbital energy levels as a result of bithiazole in the polymers' main chain. The highest occupied molecular orbital energy levels of the polymers were ?5.85 eV for PHBTzF and ?5.53 eV for PTHBTzTF. Conventional polymeric light‐emitting‐diode devices were fabricated in the ITO/PEDOT:PSS/polymer/Ca/Al configuration [where ITO is indium tin oxide and PEDOT:PSS is poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid)] with the two polymers as emitting layers. The PHBTzF device exhibited a maximum luminance of 210 cd/m2 and a turn‐on voltage of 9.4 V, whereas the PTHBTzTF device exhibited a maximum luminance of 1840 cd/m2 and a turn‐on voltage of 5.4 V. In addition, a preliminary organic solar‐cell device with the ITO/PEDOT:PSS/(PTHBTzTF + C60)/Ca/Al configuration (where C60 is fullerene) was also fabricated. Under 100 mW/cm2 of air mass 1.5 white‐light illumination, the device produced an open‐circuit voltage of 0.76 V and a short‐circuit current of 1.70 mA/cm2. The fill factor of the device was 0.40, and the power conversion efficiency was 0.52%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1845–1857, 2005  相似文献   

16.
A novel series of thiazolothiazole (Tz)‐based copolymers, poly[9,9‐didecylfluorene‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P1), poly[9,9‐dioctyldibenzosilole‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P2), and poly[4,4′‐bis(2‐ethylhexyl)‐dithieno[3,2‐b:2′,3′‐d]silole‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P3), were synthesized for the use as donor materials in polymer solar cells (PSCs). The field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers were investigated. The results suggest that the donor units in the copolymers significantly influenced the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the copolymers. The band gaps of the copolymers were in the range of 1.80–2.14 eV. Under optimized conditions, the Tz‐based polymers showed power conversion efficiencies (PCEs) for the PSCs in the range of 2.23–2.75% under AM 1.5 illumination (100 mW/cm2). Among the three copolymers, P1, which contained a fluorene donor unit, showed a PCE of 2.75% with a short‐circuit current of 8.12 mA/cm2, open circuit voltage of 0.86 V, and a fill factor (FF) of 0.39, under AM 1.5 illumination (100 mW/cm2). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Polyaniline (PANI) is prepared by chemical polymerization of aniline in acidic medium using ammonium peroxydisulfate ((NH4)2S2O8) as oxidant. The polymer, with a conductivity of 25–30 S/cm, is used to formulate conducting paints. A stable paint with a conductivity of 10?3 S/cm is obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
We have synthesized two cyclopentadithiophene (CDT)‐based low bandgap copolymers, poly[(4,4‐bis(2‐ethyl‐hexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(benzo[c][1,2,5]selenadiazole‐4,7‐diyl)] (PCBSe) and poly[(4,4‐bis(2‐ethyl‐hexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(4,7‐dithiophen‐2‐yl‐benzo[c][1,2,5]selenadiazole‐5,5′‐diyl)] (PCT2BSe), for use in photovoltaic applications. Through the internal charge transfer interaction between the electron‐donating CDT unit and the electron‐accepting benzoselenadiazole, we realized exceedingly low bandgap polymers with bandgaps of 1.37–1.46 eV. The UV–vis absorption maxima of PCT2BSe were subjected to larger hypsochromic shifts than those of PCBSe, because of the distorted electron donor–acceptor (D–A) structures of the PCT2BSe backbone. These results were supported by the calculations of the D–A complex using the ab initio Hartree‐Fock method with a split‐valence 6‐31G* basis set. However, PCT2BSe exhibited a better molar absorption coefficient in the visible region, which can lead to more efficient absorption of sunlight. As a result, PCT2BSe blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) exhibited a better photovoltaic performance than PCBSe because of the larger spectral overlap integral with respect to the solar spectrum. Furthermore, when the polymers were blended with PC71BM, PCT2BSe showed the best performance, with an open circuit voltage of 0.55 V, a short‐circuit current of 6.63 mA/cm2, and a power conversion efficiency of 1.34% under air mass 1.5 global illumination conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1423–1432, 2010  相似文献   

19.
Zero‐valent palladium complex, Pd(PTh3)3, with three tri(2‐thienyl)phosphine ligands was prepared and characterized. Pd(PTh3)3 is superior to Pd(PPh3)4 in catalyzing Suzuki‐Miyaura coupling and polymerization of thiophene‐based derivatives. The Suzuki polycondensation of 3‐hexyl‐5‐iodothiophene‐2‐boronic pinacol ester with Pd(PTh3)3 as the catalyst precursor afforded high‐molecular‐weight P3HT with high regularity and yield. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4556–4563, 2008  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号