首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A graph H is a cover of a graph G if there exists a mapping φ from V( H ) onto V( G ) such that φ maps the neighbors of every vertex υ in H bijectively to the neighbors of φ(υ) in G . Negami conjectured in 1986 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. It follows from the results of Archdeacon, Fellows, Negami, and the author that the conjecture holds as long as K 1,2,2,2 has no finite planar cover. However, this is still an open question, and K 1,2,2,2 is not the only minor‐minimal graph in doubt. Let ??4 (?2) denote the graph obtained from K 1,2,2,2 by replacing two vertex‐disjoint triangles (four edge‐disjoint triangles) not incident with the vertex of degree 6 with cubic vertices. We prove that the graphs ??4 and ?2 have no planar covers. This fact is used in [P. Hlin?ný, R. Thomas, On possible counterexamples to Negami's planar cover conjecture, 1999 (submitted)] to show that there are, up to obvious constructions, at most 16 possible counterexamples to Negami's conjecture. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 227–242, 2001  相似文献   

2.
A simple graph H is a cover of a graph G if there exists a mapping φ from H onto G such that φ maps the neighbors of every vertex υ in H bijectively to the neighbors of φ (υ) in G . Negami conjectured in 1986 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. The conjecture is still open. It follows from the results of Archdeacon, Fellows, Negami, and the first author that the conjecture holds as long as the graph K 1,2,2,2 has no finite planar cover. However, those results seem to say little about counterexamples if the conjecture was not true. We show that there are, up to obvious constructions, at most 16 possible counterexamples to Negami's conjecture. Moreover, we exhibit a finite list of sets of graphs such that the set of excluded minors for the property of having finite planar cover is one of the sets in our list. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 183–206, 2004  相似文献   

3.
A graph G has a planar cover if there exists a planar graph H , and a homomorphism φ : HG that maps the neighbors of each vertex bijectively. Each graph that has an embedding in the projective plane also has a finite planar cover. Negami conjectured the converse in 1988. This conjecture holds as long as no minor-minimal nonprojective graph has a finite planar cover. From the list there remain only two cases not solved yet—the graphs K 4,4e and K 1,2,2,2. We prove the nonexistence of a finite planar cover of K 4,4e. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 51–60, 1998  相似文献   

4.
In this paper, we study the critical point‐arboricity graphs. We prove two lower bounds for the number of edges of k‐critical point‐arboricity graphs. A theorem of Kronk is extended by proving that the point‐arboricity of a graph G embedded on a surface S with Euler genus g = 2, 5, 6 or g ≥ 10 is at most with equality holding iff G contains either K2k?1 or K2k?4 + C5 as a subgraph. It is also proved that locally planar graphs have point‐arboricity ≤ 3 and that triangle‐free locally planar‐graphs have point‐arboricity ≤ 2. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 50–61, 2002  相似文献   

5.
We investigate vertex‐transitive graphs that admit planar embeddings having infinite faces, i.e., faces whose boundary is a double ray. In the case of graphs with connectivity exactly 2, we present examples wherein no face is finite. In particular, the planar embeddings of the Cartesian product of the r‐valent tree with K2 are comprehensively studied and enumerated, as are the automorphisms of the resulting maps, and it is shown for r = 3 that no vertex‐transitive group of graph automorphisms is extendable to a group of homeomorphisms of the plane. We present all known families of infinite, locally finite, vertex‐transitive graphs of connectivity 3 and an infinite family of 4‐connected graphs that admit planar embeddings wherein each vertex is incident with an infinite face. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 257–275, 2003  相似文献   

6.
Given a graph G, a total k‐coloring of G is a simultaneous coloring of the vertices and edges of G with at most k colors. If Δ(G) is the maximum degree of G, then no graph has a total Δ‐coloring, but Vizing conjectured that every graph has a total (Δ + 2)‐coloring. This Total Coloring Conjecture remains open even for planar graphs. This article proves one of the two remaining planar cases, showing that every planar (and projective) graph with Δ ≤ 7 has a total 9‐coloring by means of the discharging method. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 67–73, 1999  相似文献   

7.
It is well known that every planar graph G is 2‐colorable in such a way that no 3‐cycle of G is monochromatic. In this paper, we prove that G has a 2‐coloring such that no cycle of length 3 or 4 is monochromatic. The complete graph K5 does not admit such a coloring. On the other hand, we extend the result to K5‐minor‐free graphs. There are planar graphs with the property that each of their 2‐colorings has a monochromatic cycle of length 3, 4, or 5. In this sense, our result is best possible. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 25–38, 2004  相似文献   

8.
It has been shown by MacGillivray and Seyffarth (Austral. J. Combin. 24 (2001) 91) that bridgeless line graphs of complete graphs, complete bipartite graphs, and planar graphs have small cycle double covers. In this paper, we extend the result for complete bipartite graphs, and show that the line graph of any complete multipartite graph (other than K1,2) has a small cycle double cover.  相似文献   

9.
Chen et al., conjectured that for r≥3, the only connected graphs with maximum degree at most r that are not equitably r‐colorable are Kr, r (for odd r) and Kr + 1. If true, this would be a joint strengthening of the Hajnal–Szemerédi theorem and Brooks' theorem. Chen et al., proved that their conjecture holds for r = 3. In this article we study properties of the hypothetical minimum counter‐examples to this conjecture and the structure of “optimal” colorings of such graphs. Using these properties and structure, we show that the Chen–Lih–Wu Conjecture holds for r≤4. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:31–48, 2012  相似文献   

10.
Three recursive constructions are presented; two deal with embeddings of complete graphs and one with embeddings of complete tripartite graphs. All three facilitate the construction of 2) non‐isomorphic face 2‐colourable triangulations of Kn and Kn,n,n in orientable and non‐orientable surfaces for values of n lying in certain residue classes and for appropriate constants a. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 87–107, 2002  相似文献   

11.
Neighborhood-perfect graphs form a subclass of the perfect graphs if the Strong Perfect Graph Conjecture of C. Berge is true. However, they are still not shown to be perfect. Here we propose the characterization of neighborhood-perfect graphs by studying minimal non-neighborhood-perfect graphs (MNNPG). After presenting some properties of MNNPGs, we show that the only MNNPGs with neighborhood independence number one are the 3-sun and 3K2. Also two further classes of neighborhood-perfect graphs are presented: line-graphs of bipartite graphs and a 3K2-free cographs. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Immersion is a containment relation on graphs that is weaker than topological minor. (Every topological minor of a graph is also its immersion.) The graphs that do not contain any of the Kuratowski graphs (K5 and K3, 3) as topological minors are exactly planar graphs. We give a structural characterization of graphs that exclude the Kuratowski graphs as immersions. We prove that they can be constructed from planar graphs that are subcubic or of branch‐width at most 10 by repetitively applying i‐edge‐sums, for . We also use this result to give a structural characterization of graphs that exclude K3, 3 as an immersion.  相似文献   

13.
A graph is k‐indivisible, where k is a positive integer, if the deletion of any finite set of vertices results in at most k – 1 infinite components. In 1971, Nash‐Williams conjectured that a 4‐connected infinite planar graph contains a spanning 2‐way infinite path if and only if it is 3‐indivisible. In this paper, we prove a structural result for 2‐indivisible infinite planar graphs. This structural result is then used to prove Nash‐Williams conjecture for all 4‐connected 2‐indivisible infinite planar graphs. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 247–266, 2005  相似文献   

14.
The authors previously published an iterative process to generate a class of projective‐planar K3, 4‐free graphs called “patch graphs.” They also showed that any simple, almost 4‐connected, nonplanar, and projective‐planar graph that is K3, 4‐free is a subgraph of a patch graph. In this article, we describe a simpler and more natural class of cubic K3, 4‐free projective‐planar graphs that we call Möbius hyperladders. Furthermore, every simple, almost 4‐connected, nonplanar, and projective‐planar graph that is K3, 4‐free is a minor of a Möbius hyperladder. As applications of these structures we determine the page number of patch graphs and of Möbius hyperladders.  相似文献   

15.
We consider the class of graphs where every induced subgraph possesses a vertex whose neighborhood has no P4 and no 2K2. We prove that Berge's Strong Perfect Graph Conjecture holds for such graphs. The class generalizes several well-known families of perfect graphs, such as triangulated graphs and bipartite graphs. Testing membership in this class and computing the maximum clique size for a graph in this class is not hard, but finding an optimal coloring is NP-hard. We give a polynomial-time algorithm for optimally coloring the vertices of such a graph when it is perfect. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
On total chromatic number of planar graphs without 4-cycles   总被引:5,自引:0,他引:5  
Let G be a simple graph with maximum degree A(G) and total chromatic number Xve(G). Vizing conjectured thatΔ(G) 1≤Xve(G)≤Δ(G) 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs isΔ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then Xve(G)≤8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.  相似文献   

17.
A cyclic face 2‐colourable triangulation of the complete graph Kn in an orientable surface exists for n ≡ 7 (mod 12). Such a triangulation corresponds to a cyclic bi‐embedding of a pair of Steiner triple systems of order n, the triples being defined by the faces in each of the two colour classes. We investigate in the general case the production of such bi‐embeddings from solutions to Heffter's first difference problem and appropriately labelled current graphs. For n = 19 and n = 31 we give a complete explanation for those pairs of Steiner triple systems which do not admit a cyclic bi‐embedding and we show how all non‐isomorphic solutions may be identified. For n = 43 we describe the structures of all possible current graphs and give a more detailed analysis in the case of the Heawood graph. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 92–110, 2002; DOI 10.1002/jcd.10001  相似文献   

18.
In this paper, we shall prove that a projective‐planar (resp., toroidal) triangulation G has K6 as a minor if and only if G has no quadrangulation isomorphic to K4 (resp., K5 ) as a subgraph. As an application of the theorems, we can prove that Hadwiger's conjecture is true for projective‐planar and toroidal triangulations. © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 302‐312, 2009  相似文献   

19.
Carsten Thomassen conjectured that every longest circuit in a 3‐connected graph has a chord. We prove the conjecture for graphs having no K3,3 minor, and consequently for planar graphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 293–298, 2008  相似文献   

20.
An exact structure is described to classify the projective‐planar graphs that do not contain a K3, 4‐minor. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号