首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the problem of minimizing among functions u:?d?Ω→?d, u∣?Ω=0, and measurable subsets E of Ω. Here fh+, f? denote quadratic potentials defined on Ω¯×{symmetric d×d matrices}, h is the minimum energy of fh+ and ε(u) is the symmetric gradient of the displacement field u. An equilibrium state û, Ê of J(u,E) is called one‐phase if E=?? or E=Ω, two‐phase otherwise. For two‐phase states, σ?E∩Ω∣ measures the effect of the separating surface, and we investigate the way in which the distribution of phases is affected by the choice of the parameters h??, σ>0. Additional results concern the smoothness of two‐phase equilibrium states and the behaviour of inf J(u,E) in the limit σ↓0. Moreover, we discuss the case of additional volume force potentials, and extend the previous results to non‐zero boundary values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
We study the homogenization of a slow viscous two‐phase incompressible flow in a domain consisting of a free fluid domain, a porous medium, and the interface between them. We take into account the capillary forces on the fluid‐fluid interfaces. We construct boundary layers describing the flow at the interface between the free fluid and the porous medium. We derive a macroscopic model with a viscous two‐phase fluid in the free domain, a coupled Darcy law connecting two‐phase velocities in the porous medium, and boundary conditions at the permeable interface between the free fluid domain and the porous medium.  相似文献   

3.
In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, the existence of positive solutions of a boundary value problem for nonlinear singular fractional‐order elastic beam equation is established. Here, f depends on t,x, and x′; f may be singular at t = 0 and t = 1; and f is a non‐Carathéodory function. The results obtained are based upon fixed‐point theorems in a cone in Banach space. An example is included to illustrate the main results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The phase transition in the size of the giant component in random graphs is one of the most well‐studied phenomena in random graph theory. For hypergraphs, there are many possible generalizations of the notion of a connected component. We consider the following: two j‐sets (sets of j vertices) are j‐connected if there is a walk of edges between them such that two consecutive edges intersect in at least j vertices. A hypergraph is j‐connected if all j‐sets are pairwise j‐connected. In this paper, we determine the asymptotic size of the unique giant j‐connected component in random k‐uniform hypergraphs for any and .  相似文献   

6.
For 0 < p < 1 and q > 0 let Gq(n,p) denote the random graph with vertex set [n]={1,…,n} such that, for each graph G on [n] with e(G) edges and c(G) components, the probability that Gq(n,p)=G is proportional to . The first systematic study of Gq(n,p) was undertaken by 6 , who analyzed the phase transition phenomenon corresponding to the emergence of the giant component. In this paper we describe the structure of Gq(n,p) very close the critical threshold. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

7.
In this paper, we are concerned with a model for the magneto–elastic interactions of a three‐dimensional elastic body and a two‐dimensional flexible plate, which is attached to the flat flexible part of the surface of the body. Both the solid body and the plate are permeated by magnetic fields. The mathematical model is analyzed from the point of view of existence and uniqueness and stabilization.It turns out that, in the presence of the magnetic fields in the solid and the plate, strong stabilization can be achieved under viscous damping in the plate in one direction that is determined by the nature of the primary magnetic fields in the body and the plate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A novel second‐order two‐scale (SOTS) analysis method is developed for predicting the transient heat conduction performance of porous materials with periodic configurations in curvilinear coordinates. Under proper coordinate transformations, some non‐periodic porous structures in Cartesian coordinates can be transformed into periodic structures in general curvilinear coordinates, which is our particular interest in this study. The SOTS asymptotic expansion formulas for computing the temperature field of transient heat conduction problem in curvilinear coordinates are constructed, some coordinate transformations are discussed, and the related SOTS formulas are given. The feature of this asymptotic model is that each of the cell functions defined in the periodic cell domain is associated with the macroscopic coordinates and the homogenized material coefficients varies continuously in the macroscopic domain behaving like the functional gradient material. Finally, the corresponding SOTS finite element algorithms are brought forward, and some numerical examples are given in detail. The numerical results demonstrate that the SOTS method proposed in this paper is valid to predict transient heat conduction performance of porous materials with periodicity in curvilinear coordinates. By proper coordinate transformations, the SOTS asymptotic analysis method can be extended to more general non‐periodic porous structures in Cartesian coordinates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over‐specified boundary in the case of the alternating iterative algorithm of Kozlov et al. (USSR Comput Math Math Phys 31 (1991), 45–52) applied to the Cauchy problem for the two‐dimensional modified Helmholtz equation. The two mixed, well‐posed and direct problems corresponding to every iteration of the numerical procedure are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is selected according to the generalized cross‐validation criterion. The iterative MFS algorithms with relaxation are tested for Cauchy problems associated with the modified Helmholtz equation in two‐dimensional geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

10.
The paper presents a study of propagation of shear wave (SH‐wave) in an orthotropic elastic medium under initial stress sandwiched by a homogeneous semi‐infinite medium and an inhomogeneous half‐space. The technique of separation of variables has been adopted to get the analytical solutions for the dispersion relation in a closed form. The propagation of SH‐waves is influenced by inhomogeneity parameters and initial stress parameter. Velocities of SH‐waves are calculated numerically for different cases. As a special case when the intermediate layer and half‐space are homogeneous, computed frequency equation coincides with general equation of Love wave. To study the effect of inhomogeneity parameters and initial stress parameter, we have plotted the velocity of SH‐wave in several figures and observed that the velocity of wave decreases with the increases of non‐dimensional wave number. It can be found that the phase velocity decreases with the increase of inhomogeneity parameters. We observed that the velocity of SH‐wave decreases with the increases of initial stress parameter in both homogeneous and inhomogeneous media. GUI has been developed by using MATLAB to generalize the effect of the parameters discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
We present an H1‐Galerkin mixed finite element method for a nonlinear parabolic equation, which models a compressible fluid flow process in subsurface porous media. The method possesses the advantages of mixed finite element methods while avoiding directly inverting the permeability tensor, which is important especially in a low permeability zone. We conducted theoretical analysis to study the existence and uniqueness of the numerical solutions of the scheme and prove an optimal‐order error estimate for the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

12.
13.
The problem of flexural wave scattering on a finite crack in elastic plate is considered. The zero-range potential is suggested as a model of a short crack. Bibliography: 2 titles. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 186, pp. 11–16, 1990. Translated by I. V. Andronov.  相似文献   

14.
This paper is devoted to discuss a multidimensional backward heat conduction problem for time‐fractional diffusion equation with inhomogeneous source. This problem is ill‐posed. We use quasi‐reversibility regularization method to solve this inverse problem. Moreover, the convergence estimates between regularization solution and the exact solution are obtained under the a priori and the a posteriori choice rules. Finally, the numerical examples for one‐dimensional and two‐dimensional cases are presented to show that our method is feasible and effective.  相似文献   

15.
16.
The approach suggested in [1, 2] is applied to the problem of the propagation of a plan longitudinal wave in an elastic medium containing a periodic system of rectangular defects. Explicit analytical representations for the scattering coefficients as well as a refined low-frequency solution are derived using a uniform approximation of the single-mode type. A comparison of the results with solutions obtained by other methods is given.  相似文献   

17.
In this article, we carry out the effect of an induced magnetic field on the peristaltic transport of an incompressible conducting third order fluid in a symmetric channel. The flow analysis has been developed for low Reynolds number and long wave length approximation. Analytical solutions have been established for the axial velocity, stream function, magnetic force function, and axial‐induced magnetic field. The effects of pertinent parameters on the pressure rise per wavelength are investigated by using numerical integration. Besides this, we study the effect of these parameters on the pressure gradient and axial induced magnetic field. The phenomena of trapping and pumping are also discussed. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

18.
For the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium we show that the corresponding system of partial differential equations possesses a global attractor. We give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow. Numerical experiments confirm the theoretical findings and raise new questions on the structure of the solutions of the system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a right‐hand side identification problem for a parabolic equation with an overdetermined condition on an observation point is considered. A first and second order of accuracy difference schemes are constructed for obtaining approximate solutions of the problem that arises in two‐phase flow in capillaries. Stability estimates and numerical results are also established. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we discuss the limit behaviour of the solution of an evolution boundary‐value problem involving the p‐Laplacian operator for the case of an equivalued condition on a shrinking surface. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号