首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental and theoretical rate coefficients are determined for the first time for the reaction of 4‐hydroxy‐3‐hexanone (CH3CH2C(O)CH(OH)CH2CH3) with OH radicals as a function of temperature. Experimental studies were carried out using two techniques. Absolute rate coefficients were measured using a cryogenically cooled cell coupled to the pulsed laser photolysis‐laser‐induced fluorescence technique with temperature and pressure ranges of 280‐365 K and 5‐80 Torr, respectively. Relative values of the studied reaction were measured under atmospheric pressure in the range of 298‐354 K by using a simulation chamber coupled to a FT‐IR spectrometer. In addition, the reaction of 4H3H with OH radicals was studied theoretically by using the density functional theory method over the range of 278‐350 K. Results show that H‐atom abstraction occurs more favorably from the C–H bound adjacent to the hydroxyl group with small barrier height. Theoretical rate coefficients are in good agreement with the experimental data. A slight negative temperature dependence was observed in both theoretical and experimental works. Overall, the results are deliberated in terms of structure–reactivity relationship and atmospheric implications.  相似文献   

2.
Mixtures of Cl2, CH4, and O2 were flash photolyzed at room temperature and pressures of ∽60–760 Torr to produce CH3O2. The CH3O2 radicals decay by the second-order process with k6 = (3.7 ± 0.3) × 10?13 cm3/sec in good agreement with other studies. This value ignores any removal by secondary radicals produced as a result of reaction (6), and therefore the true value might be as much as 30% lower. The value is independent of total pressure or the presence of H2O vapor. With SO2 also present, the CH3O2 decay becomes pseudo first order at sufficiently high SO2 pressure which indicates the reaction The value of (8.2 ± 0.5) × 10?15 cm3/sec at about 1 atm total pressure (mostly CH4) was found for CH3O2 removal by SO2, in good agreement with another recent measurement. This value can be equated with k1, unless the products rapidly remove another CH3O2 radical, in which case k1 would be a factor of 2 smaller.  相似文献   

3.
Nonadiabatic dynamics in the title reaction have been investigated by 2+1 REMPI detection of the Cl(2P(3/2)) and Cl*(2P(1/2)) products. Reaction was initiated by photodissociation of CH(3)I at 266 nm within a single expansion of a dilute mixture of CH(3)I and HCl in argon, giving a mean collision energy of 7800 cm(-1) in the center-of-mass frame. Significant production of Cl* was observed, with careful checks made to ensure that no additional photochemical or inelastic scattering sources of Cl* perturbed the measurements. The fraction of the total yield of Cl(2P(J)) atoms formed in the J=1/2 level at this collision energy was 0.150+/-0.024, and must arise from nonadiabatic dynamics because the ground potential energy surface correlates to CH(4)+Cl(2P(3/2)) products.  相似文献   

4.
We present a direct ab initio dynamics study of thermal rate constants of the hydrogen abstraction reaction of CH(3)O+H-->CH(2)O+H(2). The unrestricted Becke's half-and-half hybrid functional using the Lee-Yang-Parr correlation functional with Dunning's correlation consistent polarized valence double-zeta basis set, the unrestricted quadratic configuration interaction calculation including single and double substitutions with Dunning's correlation consistent polarized valence double-zeta basis set, and the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set methods were employed to optimize the structures and to calculate frequencies for all stationary points. Minimum energy paths were obtained by the unrestricted Becke's half-and-half hybrid functional using the Lee-Yang-Parr correlation functional and the unrestricted quadratic configuration interaction calculation including single and double substitutions with the same Dunning's correlation consistent polarized valence double-zeta basis set levels of theory. No barrier is found at the unrestricted Becke's half-and-half hybrid functional using the Lee-Yang-Parr correlation functional with Dunning's correlation consistent polarized valence double-zeta basis set level of theory in contrast to a small barrier of 1.43 kcal mol(-1) at the unrestricted quadratic configuration interaction calculation including single and double substitutions with Dunning's correlation consistent polarized valence double-zeta basis set level of theory. In particular, the barrier vanishes as the energies along the minimum energy path MEP are refined at the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set level of theory. Smaller barriers of 0.47 and 0.17 kcal mol(-1) were obtained at the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set and the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set based on the geometries at the unrestricted quadratic configuration interaction calculation including single and double substitutions with Dunning's correlation consistent polarized valence triple-zeta basis set levels of theory, respectively. The forward rate constants are evaluated with the canonical variational transition state theory in the temperature range of 300-2500 K. The calculated forward rate constants at the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set based on the geometries at the unrestricted quadratic configuration interaction calculation including single and double substitutions with Dunning's correlation consistent polarized valence double-zeta basis set level of theory are in good agreement with the available experimental data. The kinetic isotope effects are estimated.  相似文献   

5.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

6.
A direct kinetics study of the temperature dependence of the CH2O branching channel for the CH3O2 + HO2 reaction has been performed using the turbulent flow technique with high‐pressure chemical ionization mass spectrometry for the detection of reactants and products. The temperature dependence of the CH2O‐producing channel rate constant was investigated between 298 and 218 K at a pressure of 100 Torr, and the data were fitted to the following Arrhenius expression: 1.6 × 10?15 × exp[(1730 ± 130)/T] cm3 molecule?1 s?1. Using the Arrhenius expression for the overall rate of the CH3O2 + HO2 reaction and this result, the 298 K branching ratio for the CH2O producing channel is measured to be 0.11, and the branching ratio is calculated to increase to a value of 0.31 at 218 K, the lowest temperature accessed in this study. The results are compared to the analogous CH3O2 + CH3O2 reaction and the potential atmospheric ramifications of significant CH2O production from the CH3O2 + HO2 reaction are discussed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 363–376, 2001  相似文献   

7.
The solution obtained by reduction of [(triphos)CO(μ-Cl)2Co(triphos)]+2 (triphos = CH3C(CH2PPh2)3) with Na/Hg reacts with CO2, CS2 and SO2 to give (triphos)Co(O2CO), (triphos)Co(S2CO), and (triphos)Co(O2SO), respectively. The molecular structure of the last has been established by X-ray difraction.  相似文献   

8.
The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen [O((3)P)] with iso-propyl radicals, (CH(3))(2)CH, were investigated by applying a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. The nascent distributions of OH (X(2)Π: υ' = 0) from the major reaction channel O((3)P) + (CH(3))(2)CH → C(3)H(6) (propene) + OH showed substantial internal excitations with a bimodal feature of low- and high-N' components with neither spin-orbit nor Λ-doublet propensities. Unlike previous kinetic results, proposed to proceed only through the direct H-atom abstraction process, on the basis of the population analysis and comparison with the statistical theory, the title reaction can be described in terms of two competing mechanisms at the molecular level: direct abstraction process and indirect short-lived addition-complex-forming process with a ratio of 1.25?:?1.  相似文献   

9.
采用直接动力学的方法,对多通道反应体系Br+CH3S(O)CH3进行了理论研究.在BH&H-LYP/6-311G(2d,2p)水平下获得了优化几何构型、频率及最小能量路径(MEP),能量信息的进一步确认在MC-QCISD(单点)水平下完成.利用正则变分过渡态理论,结合小曲率隧道效应校正(CVT/SCT)方法计算了该反应的两个可行的反应通道在200K~2000K温度范围内的速率常数.在整个反应区间内,生成HBr的反应通道与生成CHa的反应通道存在着竞争,前者是主反应通道,后者是次反应通道.变分效应和小曲率隧道效应对反应速率常数的计算影响都很小.理论计算得到的两个反应通道的反应速率常数与实验值符合得很好.  相似文献   

10.
The reaction mechanism of CH3O2 and HS was systematically investigated by density functional theory (DFT). Six singlet pathways and seven triplet ones are located on the potential surface (PES). The result indicates that the main products are CH3O and HSO both on the singlet and triplet PES, different from the CH3O2 + OH reaction. Moreover, deformation density (ρdef) and atoms in molecules (AIM) analyses were carried out to further uncover the nature of chemical bonding evolution in the primary pathways. Furthermore, reaction rate constants were calculated in the temperature range from 200 to 1000 K using the transition state theory with the Wigner and Eckart tunneling corrections. Our results can shed light on the title reaction and offer instructions for analogous atmospheric reactions, as well as experimental research in the future.  相似文献   

11.
甲基磺酸铜制备的绿色工艺与动力学   总被引:1,自引:0,他引:1  
甲基磺酸(MSA)及其盐类能改善镀层性能,并可实现无氰电镀[1-4],本文采用空气氧化法直接由紫Cu与MSA水溶液反应生产(CH3SO3)2Cu·5H2O,达到了工艺绿色化的要求。1 实验部分1 1 试剂与仪器70%MSA(宝鸡科隆化工有限公司);99 9%紫铜片(沈阳冶炼厂);氧气(宝鸡有色金属加工厂氧气分厂);其余试剂均为分析纯试剂。AA7003A原子吸收光谱仪(北京市东西电子技术研究所);PIC-8型离子色谱仪(青岛普仁仪器有限公司);超级恒温槽。1 2 实验将500ml三口磨口烧瓶装于超级恒温槽中,装温度计、鼓气管,第三只磨口连续接装3支磨…  相似文献   

12.
13.
The reaction of triplet methylene with methanol is a key process in alcohol combustion but surprisingly this reaction has never been studied. The reaction mechanism is investigated by using various high-level ab initio methods, including the complete basis set extrapolation (CBS-QB3 and CBS-APNO), the latest Gaussian-n composite method (G4), and the Weizmann-1 method (W1U). A total of five product channels and six transition states are found. The dominant mechanism is direct hydrogen abstraction, and the major product channel is CH(3) + CH(3)O, involving a weak prereactive complex and a 7.4 kcal/mol barrier. The other hydrogen abstraction channel, CH(3) + CH(2)OH, is less important even though it is more exothermic and involves a similar barrier height. The rate coefficients are predicted in the temperature range 200-3000 K. The tunneling effect and the hindered internal rotational freedoms play a key role in the reaction. Moreover, the reaction shows significant kinetic isotope effect.  相似文献   

14.
A detailed study on the reaction mechanism of CH3SH with O2 was carried out using quantum chemical methods. Eleven singlet pathways and four triplet pathways were found based on CCSD(T)//M06-2x calculations. The nature of chemical bonding evolution was also studied using electron localization function and atoms in molecules analysis. Moreover, reaction rate constants were calculated between 200 and 800 K at the level of the transition state theory by Wigner tunneling correction. The results suggest that the main products should be CH2SO, H2O, CH3OH, SO, CH4, and SO2, respectively, basically coinciding with the experimental results. The corresponding feasible pathways are channels R7, R8, and R9, respectively, with an effective energy barrier of 56.21 kJ/mol. Obviously, given the low energy barrier similar to the main paths mentioned above, the products CH2SH and HO2 should assume a definite proportion in all possible products, although such species were not yet detected in experiment.  相似文献   

15.
A quantum chemical investigation on the reaction mechanism of CH3O2 with OH has been performed. Based on B3LYP and QCISD(T) calculations, seven possible singlet pathways and seven possible triplet pathways have been found. On the singlet potential energy surface (PES), the most favorable channel starts with a barrierless addition of O atom to CH3O2 leading to CH3OOOH and then the O? O bond dissociates to give out CH3O + HO2. On the triplet PES, the calculations indicate that the dominant products should be 3CH2O2 + H2O with an energy barrier of 29.95 kJ/mol. The results obtained in this work enrich the theoretical information of the title reaction and provide guidance for analogous atmospheric chemistry reactions. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
17.
We present a theoretical study of the O(3P) + CH4 --> OH + CH3 reaction using electronic structure, kinetics, and dynamics calculations. We calculate a grid of ab initio points at the PMP2/AUG-cc-pVDZ level to characterize the potential energy surface in regions of up to 1.3 eV above reagents. This grid of ab initio points is used to derive a set of specific reaction parameters (SRP) for the MSINDO semiempirical Hamiltonian. The resulting SRP-MSINDO Hamiltonian improves the quality of the standard Hamiltonian, particularly in regions of the potential energy surface beyond the minimum-energy reaction path. Quasiclassical-trajectory calculations are used to study the reaction dynamics with the original and the improved MSINDO semiempirical Hamiltonians, and a prior surface. The SRP-MSINDO semiempirical Hamiltonian yields OH rotational distributions in agreement with experimental results, improving over the results of the other surfaces. Thermal rate constants estimated with Variational Transition State Theory using the SRP-MSINDO Hamiltonian are also in agreement with experiments. Our results indicate that reparametrized semiempirical Hamiltonians are a good alternative to generating potential energy surfaces for accurate dynamics studies of polyatomic reactions.  相似文献   

18.
Normal Coordinate Analysis of (CH3)2SO2, (CH3)2SO(NH), and (CH3)2S(NH)2 using the Method of Stepwise Coupling The qualitative assignment of the vibrational spectra of (CH3)2SO2 ( 1 ), (CH3)2SO(NH) ( 2 a ), and (CH3)2S(NH)2 ( 3 a ) and of the C and N deuterated derivatives of 2 a and 3 a is used in a normal coordinate analysis by the method of stepwise coupling. The force constants and the energy distributions are calculated in symmetry coordinates using a generalized valence force field.  相似文献   

19.
The mechanism of the reaction between the methylsulfonyl radical, CH3S(O)2, and NO2 is examined using density functional theory and ab initio calculations. Two stable association intermediates, CH3SNO2 and CH3S(O)ONO, may be formed through the attack of the nitrogen or the oxygen atom of NO2 radical to the S atom. Interisomerization and decomposition of these intermediates are investigated using high level energy methods and specifically, CCSD(T), CBS‐QB3, and G3//B3LYP. The computational investigation indicates that the lowest energy reaction pathway leads to the products CH3S(O)3 + NO, through the decomposition of the most stable association adduct CH3S(O)ONO. This result fully supports the relevant assumption of Ray et al. (Ray et al., J. Phys. Chem. 1996, 100, 8895], on which the experimental evaluation of the rate constant was based, namely that CH3S(O)3 + NO are the most probable products of the reaction CH3S(O)2 + NO2. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The kinetics and the mechanism of the reaction CH(3)C(O)O(2)+ HO(2) were reinvestigated at room temperature using two complementary approaches: one experimental, using flash photolysis/UV absorption technique and one theoretical, with quantum chemistry calculations performed using the density functional theory (DFT) method with the three-parameter hybrid functional B3LYP associated with the 6-31G(d,p) basis set. According to a recent paper reported by Hasson et al., [J. Phys. Chem., 2004, 108, 5979-5989] this reaction may proceed by three different channels: CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)OOH + O(2) (1a); CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)OH + O(3) (1b); CH(3)C(O)O(2)+ HO(2)--> CH(3)C(O)O + OH + O(2) (1c). In experiments, CH(3)C(O)O(2) and HO(2) radicals were generated using Cl-initiated oxidation of acetaldehyde and methanol, respectively, in the presence of oxygen. The addition of amounts of benzene in the system, forming hydroxycyclohexadienyl radicals in the presence of OH, allowed us to answer that channel (1c) is <10%. The rate constant k(1) of reaction (1) has been finally measured at (1.50 +/- 0.08) x 10(-11) cm(3) molecule(-1) s(-1) at 298 K, after having considered the combination of all the possible values for the branching ratios k(1a)/k(1,)k(1b)/k(1,)k(1c)/k(1) and has been compared to previous measurements. The branching ratio k(1b)/k(1), determined by measuring ozone in situ, was found to be equal to (20 +/- 1)%, a value consistent with the previous values reported in the literature. DFT calculations show that channel (1c) is also of minor importance: it was deduced unambiguously that the formation of CH(3)C(O)OOH + O(2) (X (3)Sigma(-)(g)) is the dominant product channel, followed by the second channel (1b) leading to CH(3)C(O)OH and singlet O(3) and, much less importantly, channel (1c) which corresponds to OH formation. These conclusions give a reliable explanation of the experimental observations of this work. In conclusion, the present study demonstrates that the CH(3)C(O)O(2)+ HO(2) is still predominantly a radical chain termination reaction in the tropospheric ozone chain formation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号