首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unsymmetrical heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(4‐aminophenoxy)‐4‐phenyl]‐(2H)phthalazin‐1‐one, was synthesized. Its 1H and 13C NMR spectra were completely assigned by utilizing the two‐dimensional heteronuclear 13C–1H multiple‐bond coherence (HMBC) spectroscopy, and heteronuclear 13C–1H one‐bond correlation spectroscopy, homonuclear shift correlation spectroscopy (H,H‐COSY) and rotating frame Overhauser enhancement spectroscopy (ROESY). The structure of the compound was shown to be the phthalazinone rather than the phthalazine ether from cross peaks and chemical shifts of the protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The1H and 13C NMR resonances for acridine derivatives 9‐substituted with chloro, allylamino and propargylamino groups were completely assigned using a concerted application of gs‐COSY, gs‐HMQC and gs‐HMBC experiments. 9‐(N‐Allyl)‐ and 9‐(N‐propargyl)acridinamine derivatives present amino–imino tautomerism including a large broadening of 1H and 13C NMR signals at room temperature. To obtain suitable resolution, therefore, these latter compounds were studied at 370 K in DMSO‐d6 solutions and showed a complete shift towards the imino tautomers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The 1H and 13C NMR resonances for 16 acridin‐9(10H)‐ones substituted with amino or (1,3‐benzothiazol‐2‐yl)amino groups were completely and unequivocally assigned by the concerted application of gs‐COSY, gs‐HMQC and gs‐HMBC experiments. Evidence for hydrogen bond and amino–imino tautomerism is presented for 1‐ and 4‐substituted acridin‐9(10H)‐ones. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A series of 3‐substituted 2‐thioxo‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 4a – e were synthesized from the reaction of 3‐aminonaphthalene‐2‐carboxylic acid 1 with isothiocyanate derivatives 2a – e . The alkylation of 4a – e with alkyl halides gave 3‐substituted 2‐alkylsulfanyl‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 5a – o . S‐Glycosylation was carried out via the reaction of 4a – e with glycopyranosyl bromides 7a and 7b under anhydrous alkaline conditions. The structure of the compounds was established as S‐nucleoside and not N‐nucleoside. Conformational analysis has been studied by homonuclear and heteronuclear two‐dimensional NMR methods (2D DFQ‐COSY, heteronuclear multiple quantum coherence, and heteronuclear multiple bond correlation). The S site of alkylation and glycosylation was determined from the 1H and 13C heteronuclear multiple quantum coherence experiments.  相似文献   

5.
4‐Methyl‐6,8‐dihydroxy‐7H‐benz[de]anthracen‐7‐one was isolated from the sap of Aloe by column chromatography. Its 1H and 13C NMR spectra were completely assigned by utilizing two‐dimensional 1H‐detected heteronuclear one‐bond (HMQC) and multiple‐bond (HMBC) chemical shift correlation experiments together with 1H–1H COSY and DEPT techniques. These techniques were also valuable in assigning the protons and carbons of those benzanthrone compounds which were previously incompletely reported because of the overlap of proton signals. The molecular structure was elucidated by 2D NMR analysis. The spectral properties (MS, IR and UV) are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In the course of saponification experiments with bis(2‐cyanoethyl) 2,6‐dimethyl‐4‐(2‐nitrophenyl)‐1,4‐dihydro‐3,5‐pyridinedicarboxylate ( 1 ), an analogue of the calcium channel blocker nifedipine, three unexpected degradation products were isolated. The compounds were identified as 3‐(2‐acetamido‐1‐carboxy‐1‐propenyl)‐1‐hydroxy‐2‐indolecarboxylic acid ( 3 ), 9‐hydroxy‐1,3‐dimethyl‐β‐carboline‐4‐carboxylic acid ( 4 ) and 6‐hydroxy‐2,4‐dimethyl‐5‐oxo‐5,6‐dihydrobenzo[c][2,7]naphthyridine‐1‐carboxylic acid ( 6 ). The structures of these compounds were deduced from one‐ and two‐dimensional 1H, 13C and natural abundance 15N NMR experiments (1H,1H‐COSY, gs‐HSQC, gs‐HMBC, 15N gs‐HMBC), and corroborated by comparison of their NMR data with the respective data for structurally similar compounds. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
A 1H, 13C and 31P NMR study of monoethyl (HL1) and monobutyl (HL2) esters of (α‐anilinobenzyl)phosphonic acid and their metallocyclic dipalladium complexes (Pd2L4,L = L1, L2) in DMSO‐d6 was performed, based on 1D and 2D homo‐ and heteronuclear experiments including 1H,13C,31P,APT,1H–1H COSY, 1H–13C COSY, gs‐HMQC and gs‐HMBC NMR techniques. The results obtained are discussed with respect to those for some palladium(II) complexes reported for various anilinobenzylphosphonate derivatives. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
《Chemie in Unserer Zeit》2017,51(6):392-400
In this article we first discuss the NMR pulse sequence HMBC (heteronuclear multiple bond correlation) and demonstrate its importance for the final structure verification of the natural product cytisine. The 1H‐, 13C‐, COSY‐ und HSQC‐spectra of this compound have been shown in the first two articles of this series. After this we explain the physics of the NOESY‐experiment (nuclear Overhauser effect spectroscopy) and apply this for the stereochemical assignment of the proton signals. A correlation diagram between NOE integrals and hydrogen atom distances proofs the correct analysis.  相似文献   

9.
Novel alternating copolymers comprising bis‐ calix[4]arene‐p‐phenylene ethynylene and m‐phenylene ethynylene units ( CALIX‐m‐PPE ) were synthesized using the Sonogashira‐Hagihara cross‐coupling polymerization. Good isolated yields (60–80%) were achieved for the polymers that show Mn ranging from 1.4 × 104 to 5.1 × 104 gmol?1 (gel permeation chromatography analysis), depending on specific polymerization conditions. The structural analysis of CALIX‐m‐PPE was performed by 1H, 13C, 13C–1H heteronuclear single quantum correlation (HSQC), 13C–1H heteronuclear multiple bond correlation (HMBC), correlation spectroscopy (COSY), and nuclear overhauser effect spectroscopy (NOESY) in addition to Fourier transform‐Infrared spectroscopy and microanalysis allowing its full characterization. Depending on the reaction setup, variable amounts (16–45%) of diyne units were found in polymers although their photophysical properties are essentially the same. It is demonstrated that CALIX‐m‐PPE does not form ground‐ or excited‐state interchain interactions owing to the highly crowded environment of the main‐chain imparted by both calix[4]arene side units which behave as insulators inhibiting main‐chain π–π staking. It was also found that the luminescent properties of CALIX‐m‐PPE are markedly different from those of an all‐p‐linked phenylene ethynylene copolymer ( CALIX‐p‐PPE ) previously reported. The unexpected appearance of a low‐energy emission band at 426 nm, in addition to the locally excited‐state emission (365 nm), together with a quite low fluorescence quantum yield (? = 0.02) and a double‐exponential decay dynamics led to the formulation of an intramolecular exciplex as the new emissive species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Structure elucidation of compounds in the benzisoxazole series ( 1 – 6 ) and naphtho[1,2‐d][1,3]‐ ( 7 – 10 ) and phenanthro[9,10‐d][1,3]oxazole ( 11 – 14 ) series was accomplished using extensive 2D NMR spectroscopic studies including 1H–1H COSY, long‐ range 1H–1H COSY, 1H–13C COSY, gHMQC, gHMBC and gHMQC‐TOCSY experiments. The distinction between oxazole and isoxazole rings was made on the basis of the magnitude of heteronuclear one‐bond 1JC2, H2 (or 1JC3, H3) coupling constants. Complete analysis of the 1H NMR spectra of 11 – 14 was achieved by iterative calculations. Gradient selected gHMQC‐TOCSY spectra of phenanthro[9,10‐d][1,3]oxazoles 11 – 14 were obtained at different mixing times (12, 24, 36, 48 and 80 ms) to identify the spin system where the protons of phenanthrene ring at H‐5, H‐6 and at H‐9 and H‐7 and H‐8 were highly overlapping. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
1H and 13C NMR spectral data for diethyl 2‐ and 8‐quinolylmethylphosphonates (L) and their palladium(II) dihalide complexes, trans‐[PdL2X2] (L = 2‐dqmp, 8‐dqmp; X = Cl, Br), are presented. The NMR analysis was performed on the basis of one‐ and two‐dimensional homo‐ and heteronuclear experiments including 1H, 13C, APT, 1H–1H COSY, 1H–13C COSY, HMQC and HMBC techniques. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
One new ceramide (=long‐chain base linked to a fatty acid via an amide bond), tanacetamide D ( 1 ), was isolated from Tanacetum artemisioides. Besides this, the two known constituents 5‐demethylnobiletin ( 2 ) and 5‐hydroxy‐3,6,7,8,3′,4′‐hexamethoxyflavone ( 3 ) were isolated for the first time from this species. The structure elucidation of the isolated compounds were based primarily on 2D‐NMR techniques including correlation spectroscopy (COSY), heteronuclear multiple‐quantum coherence (HMQC), heteronuclear multiple‐bond correlation (HMBC), and nuclear Overhauser effect spectroscopy (NOESY) experiments.  相似文献   

13.
Cellulose ( 1 ) was converted for the first time to 6‐phenyl‐6‐deoxy‐2,3‐di‐O‐methylcellulose ( 6 ) in 33% overall yield. Intermediates in the five‐step conversion of 1 to­ 6 were: 6‐O‐tritylcellulose ( 2 ), 6‐O‐trityl‐2,3‐di‐O‐methylcellulose ( 3 ), 2,3‐di‐O‐methylcellulose ( 4 ); and 6‐bromo‐6‐deoxy‐2,3‐di‐O‐methylcellulose ( 5 ). Elemental and quantitative carbon‐13 analyses were concurrently used to verify and confirm the degrees of substitution in each new polymer. Gel permeation chromotography (GPC) data were generated to monitor the changes in molecular weight (DPw) as the synthesis progressed, and the compound average decrease in cellulose DPw was ~ 27%. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize the decomposition of all polymers. The degradation temperatures ( °C) and percent char at 500 °C of cellulose derivatives 2 to 6 were 308.6 and 6.3%, 227.6 °C and 9.7%, 273.9 °C and 30.2%, 200.4 °C and 25.6%, and 207.2 °C and 27.0%, respectively. The glass transition temperature (Tg) of­6‐O‐tritylcellulose by dynamic mechanical analysis (DMA) occurred at 126.7 °C and the modulus (E′, Pa) dropped 8.9 fold in the transition from ?150 °C to + 180 °C (6.6 × 109 to 7.4 × 108 Pa). Modulus at 20 °C was 3.26 × 109 Pa. Complete proton and carbon‐13 chemical shift assignments of the repeating unit of the title polymer were made by a combination of the HMQC and COSY NMR methods. Ultimate non‐destructive proof of carbon–carbon bond formation at C6 of the anhydroglucose moiety was established by generating correlations between resonances of CH26 (anhydroglucose) and C1′, H2′, and H6′ of the attached aryl ring using the heteronuclear multiple‐bond correlation (HMBC) method. In this study, we achieved three major objectives: (a) new methodologies for the chemical modification of cellulose were developed; (b) new cellulose derivatives were designed, prepared and characterized; (c) unequivocal structural proof for carbon–carbon bond formation with cellulose was derived non‐destructively by use of one‐ and two‐dimensional NMR methods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
The luminescent complex [4‐(3‐hydroxypropyl)‐4′‐methyl‐2,2′‐bipyridine]‐bis(2,2′‐bipyridine)‐ruthenium(II)‐bis(hexafluoroantimonate) and its methacrylate derivative were successfully synthesized and fully characterized by two‐dimensional 1H and 13C{1H} NMR techniques [correlation spectroscopy (COSY) and heteronuclear multiple‐quantum coherence experiment (HMQC)], as well as matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. The respective labeled methyl methacrylate‐ruthenium(polypyridyl) copolymers were obtained by free‐radical copolymerization with methyl methacrylate and were characterized utilizing NMR, IR, and UV–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3954–3964, 2003  相似文献   

15.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A series of N‐(ferrocenylmethyl amino acid) fluorinated benzene‐carboxamide derivatives 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i and 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i have been synthesized by coupling ferrocenylmethyl amine 3 with various substituted N‐(fluorobenzoyl) amino acid derivatives using the standard N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride, 1‐hydroxybenzotriazole protocol. The amino acids employed in this study were glycine and L‐alanine. All of the compounds were fully characterized using a combination of 1H NMR, 13C NMR, 19F NMR, distortionless enhancement by polarization transfer (DEPT)‐135, 1H–1H correlation spectroscopy (COSY) and 1H–13C COSY (heteronuclear multiple‐quantum correlation) spectroscopy. The compounds were biologically evaluated on the oestrogen‐positive MCF‐7 breast cancer cell line. Compounds 4g , 4i , 5h and 5i exhibited cytotoxic effects on the MCF‐7 breast cancer cell line. N‐(Ferrocenylmethyl‐L‐alanine)‐3,4,5‐trifluorobenzene‐carboxamide ( 5h ) was the most active compound, with an IC50 value of 2.84 μm . Compounds 4i , 5h and 5i had lower IC50 values than that found for the clinically employed anticancer drug cisplatin (IC50 = 16.3 μm against MCF‐7). Guanine oxidation studies confirmed that 5h was capable of generating oxidative damage via a reactive oxygen species‐mediated mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The synthesis of 3,3′‐diacetoxy‐4,4′‐bis(hexyloxy)biphenyl following the nickel‐modified Ullmann reaction yielded a by‐product which was identified successfully by crystallographic analysis as 1‐(4‐hexyloxy‐3‐hydroxyphenyl)ethanone, C14H20O3. This unexpected nonbiphenyl by‐product exhibited IR, 1H NMR, 13C NMR and COSY (correlation spectroscopy) spectra fully consistent with the proposed structure. The compound crystallized in the orthorombic Pbca space group, with two independent formula units in the asymmetric unit (one of which was slightly disordered), and showed a supramolecular architecture in which molecules linked by hydroxy–ethanone O—H...O interactions are organized in columns separated by the aliphatic tails.  相似文献   

18.
1,2,4‐trithioles 2a–e are readily obtained in good yields by dimerization of benzoyldithioacetic acid derivatives using samarium diiodide as a promotor under very mild conditions. The structures of compounds 2a–e were determined by IR, 1H, and 13C NMR spectroscopies using heteronuclear multiple bond correlation, heteronuclear multiple quantum correlation, and nuclear Overhauser enhancement spectroscopy experiments, mass spectrometry, and, in the case of 2a, the structure was confirmed by single‐crystal X‐ray diffraction studies. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:329–335, 2000  相似文献   

19.
The 1H and 13C NMR resonances of 16 purine glucosides were assigned by a combination of one‐ and two‐dimensional NMR experiments, including gs‐COSY, gs‐HSQC, and gs‐HMBC, in order to characterize the effect of substituent and the position of glucose unit on the NMR chemical shifts. In addition, 15N NMR chemical shifts for selected derivatives were investigated by using 1H? 15N chemical shift correlation techniques. To map the influence of sugar moiety on the directly bonded nitrogen atom, selected N9‐glucosides and their ribose analogs were compared. Characteristic long‐range 1H? 15N coupling constants, measured by using 1H? 15N gradient‐selected single‐quantum multiple bond correlation (GSQMBC), are also reported and discussed. All compounds investigated here belong to cytokinins, an important group of plant hormones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The surface hydroxyl groups of γ‐alumina dehydroxylated at 500 °C were studied by a combination of one‐ and two‐dimensional homo‐ and heteronuclear 1H and 27Al NMR spectroscopy at high magnetic field. In particular, by harnessing 1H–27Al dipolar interactions, a high selectivity was achieved in unveiling the topology of the alumina surface. The terminal versus bridging character of the hydroxyl groups observed in the 1H magic‐angle spinning (MAS) NMR spectrum was demonstrated thanks to 1H–27Al RESPDOR (resonance‐echo saturation‐pulse double‐resonance). In a further step the hydroxyl groups were assigned to their aluminium neighbours thanks to a {1H}‐27Al dipolar heteronuclear multiple quantum correlation (D‐HMQC), which was used to establish a first coordination map. Then, in combination with 1H–1H double quantum (DQ) MAS, these elements helped to reveal intimate structural features of the surface hydroxyls. Finally, the nature of a peculiar reactive hydroxyl group was demonstrated following this methodology in the case of CO2 reactivity with alumina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号