首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary: The phase behavior and optical properties of a cholesteric ternary copolymer, containing nematogenic phenylbenzoate, cholesteric, and photochromic diarylethene side groups, and its mixture with 2 wt.‐% fluorescent dopant were studied. The investigation of the kinetics of a photochemical opening‐cycle process of the photochromic groups in the cholesteric mixture proved the energy transfer from the fluorescent dopant to the photochromic diarylethene groups. It was shown that the fluorescence intensity of the fluorescent dopant could be controlled by the portion of the “closed” form of the diarylethene groups. During the photocyclization of the photochromic groups a “degeneration” of the selective light reflection of the cholesteric matrix is observed.

Fluorescence‐resonance energy transfer makes possible the process of photosensitization of the back ring‐opening photoreaction of the photochromic diarylethene groups in the cholesteric polymer matrix.  相似文献   


2.
A new type of polymer–liquid crystal composite with photovariable dichroism and birefringence is described. Porous stretched polyethylene films were used as polymer matrices. To induce a cholesteric phase in a commercial nematic host, a chiral photochromic dopant based on sorbide and cinnamic acid capable of E–Z isomerization under UV irradiation was used. A merocianine‐type substance was selected as a dichroic dye. Introduction of a dye‐doped cholesteric mixture with a helical pitch higher than ~300 nm to polymer film led to an almost complete transition from a cholesteric to an oriented nematic phase, as well as to an increase in birefringence and the appearance of dichroism. Decrease of the helical pitch by increasing in the chiral dopant concentration in the liquid crystal–polymer composite results in a reduction of the dichroism values. UV irradiation of polymer composite leading to an isomerization of the chiral dopant and helix untwisting induces a noticeable gradual growth of dichroism and birefringence. These new composites can be considered as promising materials for optical applications.  相似文献   

3.
The recording of polarization gratings in films of a cholesteric liquid crystalline polymer with different helix pitch was studied in detail. For this purpose, the cholesteric mixture of the nematic azobenzene‐containing copolymer with a chiral‐photochromic dopant was prepared. The utilization of such mixture has made possible to realize dual optical photorecording in one system, first due to the phototuning of the helix pitch by UV light and second the polarization grating recording process by exposure with polarized visible light. The diffraction efficiency strongly depends on the cholesteric helix pitch and films thickness: the increase of the confinement ratio d/p (where d, film thickness; p, helix pitch) results in growth of the diffraction efficiency. Comparison of the induction of polarization gratings in cholesteric, nematic (copolymer without chiral dopant), and amorphous (nonannealed) cholesteric films revealed that only the cholesteric films were characterized by significant oscillations in the diffraction efficiency signal as well as by the presence of the maximum in the first‐order diffraction efficiency in the initial stage of the grating recording process. It was found that in addition to the polarization grating surface relief gratings (SRGs) were also formed in the studied systems, however, the amplitude of the SRG inscribed in the cholesteric films was lower (~20 nm) compared to the grating amplitude obtained in nematic films (~60 nm). Moreover, increasing helix pitch resulted in a decrease of the SRG amplitude. The obtained experimental data demonstrate the great potential of cholesteric LC mixtures of such type for different applications as photoactive materials for photonics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 773–781  相似文献   

4.
A photosensitive fluorescent cholesteric guest-host mixture consisting of a nematic polyacrylate, a chiral, photochromic dopant sensitive to UV light, and a fluorescent dopant was prepared. The nematic polyacrylate contains 4-phenyl-4'-methoxybenzoate nematogenic side groups and photochromic 4-cyanoazobenzene side groups. The chiral-photochromic dopant formed by isosorbide and cinnamic acid is capable of E-Z photoisomerization and [2 + 2] photo-cycloaddition under light irradiation. The planarly oriented films possess a selective light reflection in the visible spectral region coinciding with the emission peak of the fluorescent dopant. The fluorescence emitted by the planarly oriented films of the mixture is strongly circularly polarized and characterized by a large value of the dis-symmetry factor. At temperatures below glass transition (T(g)) the polarized light action of an Ar(+) laser (488 nm) leads to the photo-orientation of the azobenzene fragments resulting in a strong and reversible disruption of the selective reflection and a decrease of the dis-symmetry factor of fluorescence. UV irradiation leads to E-Z isomerization and/or [2 + 2] cycloaddition of the chiral-photochromic dopant, causing an irreversible shift of the maximum of the dis-symmetry factor to a long-wavelength spectral region under subsequent annealing at temperatures higher than T(g). Such multifunctional glass-forming guest-host mixtures combining photosensitive and fluorescent properties with the unique optical properties of cholesteric liquid crystals can be considered as promising material for optical data processing technologies and photonic applications.  相似文献   

5.
A chiral and thermally irreversible photochromic fulgide derivative incorporating an (R)-binaphthol unit in its acid anhydride moiety was used for the photoswitching of the pitch length of cholesteric liquid crystals. Since the absorption maximum wavelengths of both thermally stable photoisomers are nearly in the UV region (quasi-stealth photochromism), it can be exposed to visible light without inducing photochromic reactions. Therefore, when the photoswitching molecule is added to a permanent cholesteric liquid crystal whose reflection light wavelength is in the visible region, the UV light-induced photochromic reaction of the photoswitching molecule changes the wavelength of the reflection light in the visible light region. We have succeeded in regulating the color of cholesteric liquid crystalline cells between red and blue upon UV light irradiation. Attempts to introduce this system in polymer dispersed cholesteric liquid crystals are also described.  相似文献   

6.
A new type of polymer-liquid crystal composite with photovariable dichroism and birefringence is described. Porous stretched polyethylene films were used as polymer matrices. To induce a cholesteric phase in a commercial nematic host, a chiral photochromic dopant based on sorbide and cinnamic acid capable of E-Z isomerization under UV irradiation was used. A merocianine-type substance was selected as a dichroic dye. Introduction of a dye-doped cholesteric mixture with a helical pitch higher than ∼300 nm to polymer film led to an almost complete transition from a cholesteric to an oriented nematic phase, as well as to an increase in birefringence and the appearance of dichroism. Decrease of the helical pitch by increasing in the chiral dopant concentration in the liquid crystal-polymer composite results in a reduction of the dichroism values. UV irradiation of polymer composite leading to an isomerization of the chiral dopant and helix untwisting induces a noticeable gradual growth of dichroism and birefringence. These new composites can be considered as promising materials for optical applications.  相似文献   

7.
《Liquid crystals》2001,28(6):919-931
New chiral photochromic cholesteric comb-shaped acrylic copolymers and low molecular mass dopants containing azobenzene photosensitive fragments and chiral groups based on menthol and menthone were synthesized. For the copolymers and their mixtures with low molecular mass dopants, the phase behaviour and optical properties were studied. Under irradiation with UV and visible light, the untwisting of cholesteric helix takes place, and the selective light reflection maximum is shifted to the long wavelength spectral region. This shift is related to the E-Z isomerization of the azobenzene chiral groups. For the copolymers and mixtures of the cholesteric polymer with the menthyl-containing dopant, this process is thermally reversible. The specific features of the kinetics of the forward and the reverse thermal processes were characterized. It was demonstrated, that the copolymers and mixtures of the cholesteric copolymer with the menthyl-containing dopant may be used for coloured reversible recording of optical information. For such materials, their resistance with respect to the repeated 'recording-erasing' cycles was tested, and the fatigue resistance was shown to be rather high.  相似文献   

8.
Photochromic liquid‐crystalline copolymers consisting of a photochromic monomeric unit containing both a spironaphthoxazine group and an undecamethylene spacer, and a liquid‐crystalline monomeric unit containing both a cholesteryl group and a decamethylene spacer were prepared to investigate the effect of the thermal properties of the photochromic monomeric unit on the mesomorphic order of the side chain of the related copolymers. The photochromic liquid‐crystalline copolymers containing a photochromic liquid‐crystalline monomeric unit showed only a smectic phase. On the other hand, the photochromic liquid‐crystalline copolymers containing a photochromic non‐liquid‐crystalline monomeric unit showed a chiral nematic phase (cholesteric phase). The photochromic chiral nematic liquid‐crystalline copolymer containing 14 mol % photochromic monomeric unit reflected visible light around 104 °C. To lower the temperature range of reflection of visible light, cholesteryl oleyl carbonate was used as a chiral nematic plasticizer for the photochromic chiral liquid‐crystalline polymer systems. Photo‐induced pitch change of the mixture by means of UV irradiation was investigated and it was concluded that the pitch change observed under UV irradiation was mainly induced by thermal effect in the case of our system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 887–894, 2000  相似文献   

9.
New chiral photochromic cholesteric comb-shaped acrylic copolymers and low molecular mass dopants containing azobenzene photosensitive fragments and chiral groups based on menthol and menthone were synthesized. For the copolymers and their mixtures with low molecular mass dopants, the phase behaviour and optical properties were studied. Under irradiation with UV and visible light, the untwisting of cholesteric helix takes place, and the selective light reflection maximum is shifted to the long wavelength spectral region. This shift is related to the E-Z isomerization of the azobenzene chiral groups. For the copolymers and mixtures of the cholesteric polymer with the menthyl-containing dopant, this process is thermally reversible. The specific features of the kinetics of the forward and the reverse thermal processes were characterized. It was demonstrated, that the copolymers and mixtures of the cholesteric copolymer with the menthyl-containing dopant may be used for coloured reversible recording of optical information. For such materials, their resistance with respect to the repeated 'recording-erasing' cycles was tested, and the fatigue resistance was shown to be rather high.  相似文献   

10.
A new low molar mass chiral-photochromic dopant was synthesized. It contains a menthyl fragment as the chiral group and an azobenzene group, capable of E - Z photoisomerization, as the photochromic component. The substance obtained was used as a chiral dopant in mixtures with a comb-shaped cholesteric acrylic copolymer with menthyl-containing chiral side groups and phenyl benzoate nematogenic side groups. Such mixtures form a cholesteric mesophase. The chiral dopant led to an additional twisting of the cholesteric helix, i.e. to a shift of the selective light reflection peak to a shorter wavelength region of the spectrum. The initial copolymer gave selective light reflection in the spectral range 1200-1400 nm; the mixture containing 3.5 mol % of chiral-photochromic dopant reflects light with λmax~ 850 nm. The action of light with λir~ 440 nm results in E - Z isomerization of the azo-group of the chiral dopant and in a shift of the selective light reflection peak to the long wavelength region of the spectrum (amplitude of shift = 30 nm). This is explained by a lower helical twisting power of the Z-isomer of the chiral dopant. This process is thermally reversible: annealing of irradiated films leads to a back shift of the selective light reflection peak to the short wavelength region of the spectrum due to Z - E isomerization. Kinetic features of the direct and backward processes of isomerization were studied: it was shown, that mixtures of the chiralphotochromic azobenzene-containing dopant with cholesteric polymers give new possibilities for the creation of polymer materials with a reversibly regulated helical supramolecular structure which determines their optical properties.  相似文献   

11.
《Liquid crystals》1998,25(6):679-687
Mixtures of a photosensitive chiral dopant based on ( )-menthone with left-handed and righthanded cholesteric copolymers were prepared. The phase behaviour and optical properties of the mixtures prepared were studied. The action of UV radiation on planar oriented films of such systems was shown to induce dramatic changes in the maximum reflection wavelength as a result of E-Z isomerization of the dopant molecules. The kinetics of photoisomerization of such mixtures in solution and in the bulk were investigated at different temperatures. The above mixtures can be considered as promising and uprecedented materials for coloured data recording and storage.  相似文献   

12.
Three rationally designed axially chiral diarylethene switches were synthesized and their application as chiral dopants for phototunable cholesteric liquid crystal devices was investigated. Design of these molecules was based on the combination of photochromic dithienylcyclopentene core with bridged binaphthyl units as chiral precursors. Aromatic groups were introduced to the molecules at 6,6′‐positions of binaphthyls through a Suzuki–Miyaura coupling reaction. Their helical twisting powers (HTPs) are significantly higher than those of the known chiral diarylethenes reported as chiral dopants so far. Photocyclization of these molecules upon light irradiation brought out dramatic variation in HTPs between different states. The primary colors, red, green, and blue, were obtained in reflection on light irradiation and with thermal stability. Moreover, a multi‐switchable photodisplay was demonstrated using one of these chiral molecular switches.  相似文献   

13.
Cross‐linked liquid‐crystalline (LC) polymers with a mesomorphic diarylethene were prepared to demonstrate a versatile strategy for cross‐linked photochromic LC polymers as photomobile materials. Upon exposure to UV light to cause photocyclization of the diarylethene chromophore, the cross‐linked polymer films bend toward an actinic light source. By irradiation with visible light to cause a closed‐ring to open‐ring isomerization, the bent films revert to the initial flat state. Without visible‐light irradiation, the bent films remain bent even at 120 °C, indicating high thermal stability of the cross‐linked diarylethene LC polymers.  相似文献   

14.
A new approach to the creation of cholesteric glass‐forming materials with photovariable fluorescent properties is suggested. This approach is based on Förster type energy transfer from a photochemically active donor to a highly fluorescent acceptor. For this purpose, a cholesteric mixture containing two fluorescent dopants based on anthracene (Dianthr) and stilbene (DCM) was prepared and studied. The absorbance peak of DCM molecules overlaps the emission peak of Dianthr. The possibility of using energy transfer in cholesteric mixtures containing a photoactive energy donor capable of photobleaching is demonstrated. It is shown that UV irradiation of planarly oriented films of the mixture leads to photodimerization of the Dianthr dopant. This photoreaction results in a significant decrease in the emission intensity of the DCM dopant. In all cases the emitted light is strongly circularly polarized, and the degree of polarization does not change during photoreaction. Such types of photo‐patternable glass‐forming cholesteric materials combining fluorescent properties, the possibility of energy transfer between two fluorescent dyes and a photoactivity of one fluorescent component, provide new opportunities for optical data recording and storage.  相似文献   

15.
Five photochromic chiral azobenzene compounds and one nonphotochromic chiral compound were synthesized and characterized by IR, 1H NMR spectroscopy, and elemental analysis. Cholesteric liquid crystalline phases were induced by mixing of the nonphotochromic chiral compound and one of the photochromic chiral azobenzene compounds in a host nematic liquid crystal (E44). The helical pitch of the induced cholesteric phase was determined by Cano's wedge method and the helical twisting power (HTP) of each sample was thus determined. The helical twisting powers of azobenzene compounds were decreased upon UV irradiation, due to trans-->cis photoisomerization of azobenzene molecules. Among the azobenzene compounds synthesized in our study, Azo-5, with isomannide (radical) as chiral photochromic dopant, showed the highest HTP and contrast ratio (Tmax/Tmin). Photoswitching between compensated nematic phase and cholesteric phase was achieved through reversible trans<-->cis photoisomerization of the chiral azobenzene molecules through irradiation with UV and visible light, respectively. Transmission rates (contrast ratios) increased with decreasing helical pitch length in the induced cholesteric phase. The influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds is discussed in detail.  相似文献   

16.
A new family of multifunctional chiral‐photochromic liquid crystalline (LC) copolymers containing mesogenic, chiral and photoactive groups were synthesized. The new principles of photo‐regulation of the helical supramolecular structure and optical properties of the binary and ternary chiral‐photochromic LC polymers based on the change of helical twisting power of the chiral‐photochromic monomer units, the dual photochromism and photochemical spectral gap burning were developed. It was shown, that the introduction of small amount of low‐molar‐mass chiral‐photochromic dopants in chiral LC copolymers having different helix signs followed by light irradiation permits one to twist or untwist the helical supramolecular structure. The synthesized polymers are shown to be promising candidates for colour data recording and storage.  相似文献   

17.
A new unsymmetrical photochromic diarylethene, namely1-[2-methyl-5-(p-N,N-dimethylaminophenyl)-3-thienyl]-2-[2-methyl-5-(3-methoxylphenyl)-3-thienyl] perfluorocyclopentene (1a), was synthesized. The compound showed good photochromism, high sensitivity and remarkable fatigue-resistance both in solution and in poly(methyl methacrylate) (PMMA) matrix with UV/Vis light irradiation. The absorption maximum of its closed-ring isomer was observed at 624 nm in PMMA amorphous film. It is a nice match for the wavelength of the recording laser (633 nm). Using this target compound as recording medium, four types of polarization holographic optical recordings were performed successfully using a He-Ne laser. The results showed that only the orthogonal circular polarization recording could obtain a hologram with high diffraction efficiency and high signal-to noise-ratio. With multiplexing recording technology, three types of polarization multiplexing holographic optical recordings, including angular multiplexing, polarization multiplexing, and angular plus polarization multiplexing holographic recording, were also carried out perfectly based on its photoinduced anisotropic phenomenon accompanying the photochromic reaction by photoirradiation. The results demonstrate that the multiplexing recording technology is an effective method to improve recording capacity when using diarylethene 1 as recording medium.  相似文献   

18.
The photocontrolled phase transitions and reflection behaviors of a smectic liquid crystal, 4‐octyl‐4′‐cyanobiphenyl (8CB), tuned by a chiral azobenzene, are systematically investigated. For the smectic 8CB doped with the chiral azobenzene (1R)‐(?)‐4‐n‐hexyl‐4′‐menthylazobenzene (ABE), the initial smectic phase can be switched to cholesteric and then to isotropic upon UV irradiation due to the trans‐to‐cis photoisomerization of ABE; however, no reflection band is observed. For the smectic 8CB doped with ABE and the chiral agent (S)‐(?)‐1,1′‐binaphthyl‐2,2′‐diol (BN), a reflection band located in the short‐wavelength infrared region is observed, which disappears after further UV irradiation. For the smectic 8CB doped with ABE and a chiral agent with higher helical twisting power, (S)‐2,2′‐methylendioxy‐1,1′‐binaphthalene (DBN), a phototunable system with cholesteric pitch short enough to reflect visible light is demonstrated. With a given concentration of the chiral dopant DBN, a reversible reflection color transition is realized tuned by the isomerization of azobenzene. The reverse phase transition from isotropic to cholesteric and then to smectic can be recovered upon visible irradiation. The photocontrolled phase transitions in smectic liquid crystals and the corresponding changes in reflection band switched by photoisomerization of azobenzene may provide impetus for their practical application in optical memories, displays, and switches.  相似文献   

19.
The isothermal formation of concentric colour domains has been observed in a cholesteric mixture doped with 10 wt % of a photochromic nematic material. The host cholesteric mixture included the Merck materials BL131a and BL130, while the photochromic dopant was a mixture of 4-n-butyl-4'-n-alkoxyazobenzenes (BAAB). The helical pitch of the host cholesteric mixture was increased, as expected, on addition of the photochromic nematic material prior to irradiation with the molecules in the purely trans-configuration. On irradiation with low power (0.6 mW) argon ion laser light, cis-isomers formed within the interaction region and concentric colour domains appeared. Selective reflection from the colour domains occurred in the 400-560 nm spectral range. The coloured domains persisted in the time period following irradiation and extended beyond the interaction region because of diffusion of the cis-isomers. Using the diffusion equation, an expression has been obtained for the average concentration of cis-isomers in each of the coloured domains and the dependence of the reflection wavelength upon the concentration of cis-isomers has been determined.  相似文献   

20.
A number of the novel photochromic polyethylene (PE)‐based liquid crystal composites were prepared and studied. The oriented stretched porous polyethylene films were used as the polymer matrices. Commercial liquid crystals doped with new photochromic compounds were introduced into PE films and photo‐optical properties of the obtained composites were investigated. It was shown that a director of nematic liquid crystals is highly oriented along the stretching axis of PE films resulting in noticeable linear dichroism of the PE composite films. New approaches for reversible or irreversible image recording on PE LC composites by UV irradiation were demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号