首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
15N NMR spectral data for 3‐substituted (chloro, bromo, acetyl, carboxy, carboethoxy, methylsulfanyl, methylsulfinyl, N,N‐dimethylsulfamoyl, nitro) 4(1H)‐quinolinones and their 1‐methyl derivatives are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
In this article, we describe the characteristic 15N and 1HN NMR chemical shifts and 1J(15N–1H) coupling constants of various symmetrically and unsymmetrically substituted 1,4‐dihydropyridine derivatives. The NMR chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as character and position of the substituent in heterocycle, N‐alkyl substitution, nitrogen lone pair delocalization within the conjugated system, and steric effects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We measured the 1H, 13 C and 15 N chemical shifts for a series of purine derivatives bearing a norbornane substituent in position 9 and various substituents in position 6. The experimental data were complemented with density functional theory (DFT) calculations. The comparison of the calculated and experimental chemical shifts provided us with information about the tautomer and conformational equilibria of the studied compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
1H, 13C and 15N NMR chemical shifts of 10 substituted pyrazolo[1,5‐a]pyrimidines were assigned based on DQF 1H, 1H COSY, PFG 1H, 13C HMQC and PFG 1H,X (X = 13C and 15N) HMBC experiments and on literature data. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
15N NMR chemical shifts of 2‐aryl‐1,3,4‐oxadiazoles were assigned on the basis of the 1H–15N HMBC experiment. Chemical shifts of the nitrogen and carbon atoms in the oxadiazole ring correlate with the Hammett σ‐constants of substituents in the aryl ring (r2 ≥ 0.966 for N atoms). 15N NMR data are a suitable and sensitive means for characterizing long‐range electronic substituent effects. Additionally, 13C NMR data for these compounds are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
15N NMR data for a series of 12 para‐substituted benzamidoximes and benzamidinium salts were determined in dimethyl sulfoxide. For the amino group of benzamidoximes 1J(N,H) coupling constants were determined using polarization transfer techniques; the other 15N atoms were not detectable owing to fast exchange processes and, thus, standard proton noise decoupled spectra had to be measured. The 15N NMR chemical shifts of the oxime‐type nitrogen atom and the benzamidinium amino group (with two exceptions) correlate with Hammett σ° values (r2>0.95). 15N NMR shift data are a suitable and sensitive means for characterizing far‐ranging electronic substituent effects in these functional groups. Additionally, 13C NMR data in dimethyl sulfoxide solution are given. All spectroscopic data will be used for investigations into the mechanisms of the enzymes involved in the metabolic cycle of oxidation and reduction of benzamidines and benzamidoximes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
15N NMR data of a series of 3‐alkyl[aryl] substituted 5‐trichloromethyl‐1,2‐dimethyl‐1H‐pyrazolium chlorides (where the 3‐substituents are H, Me, Et, n‐Pr, n‐Bu, n‐Pe, n‐Hex, (CH2)5CO2Et, CH2Br, Ph and 4‐Br‐C6H4), are reported. The 15N substituent chemical shifts (SCS) parameters are determined and these data are compared with the 13C SCS values and data obtained by MO calculations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The analysis of (15)N chemical shift data from over a hundred anilines, N-methyl anilines, N,N-dimethyl anilines and phenylhydrazines with substituents in the phenyl ring leads to an empirical equation, delta(cal) = deltaon + Deltao + Deltam + Deltap, for calculating (15)N NMR chemical shifts of the amino group. This equation is based on a linear regression analysis using eighteen substituent parameters and leads to good conformity with the expected data.  相似文献   

9.
Continuing our systematic 15N NMR study of isoquinoline alkaloids, we report a contribution extending our previous paper. The 15N NMR chemical shifts and 15N,1H long‐range coupling pathways of tertiary and quaternary isoquinoline alkaloids of several constitutional types are presented. The selected compounds belong to the protoberberine, proaporphine, pavinane, rhoeadine and phtalideisoquinoline classes of alkaloids and were investigated by gradient‐selected inverse‐detected multiple bond correlation experiments (GHMBC and GSQMBC). In addition, x‐ray data and the principal geometric parameters of stylopine, mecambridine, norchelerythrine, isothebaine and mecambrine are reported and discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Substituted 2-(phenylamino)-5-phenyl-1,3,4-oxadiazoles were studied by 15N NMR spectroscopy. All signals were assigned on the basis of HMQC and HMBC experiments. Chemical shifts values were correlated with empirical Hammett parameters as well as with calculated electron densities and chemical shieldings.  相似文献   

11.
Treatment of 2‐acetyl‐2‐methylcyclopentanone with hydrazine hydrate yielded a new condensed hexahydro‐1,3,5‐triazine (3b), which is the first example of the ketimine‐type trimers. A complete 1H, 13C and 15N NMR assignment of the compound was achieved. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Well defined E/Z isomers of N‐methoxy‐p‐nitrobenzimidoyl chloride, N‐methoxybenzimidoyl chloride, methyl N‐methylbenzohydroximate and ethyl N‐hydroxybenzimidate were prepared in order to provide model data for studies of benzhydroximic acid derivatives and related compounds. NMR parameters [1H, 13C and 15N chemical shifts and 1J(13C, 13C) coupling constants] were determined. The results show that stereochemically most significant are the values of 1J(13C, 13C) couplings between aromatic Cipso and C?N carbons and that the relationship, |Jcis| > |Jtrans|, known for this coupling from oximes, is not affected by electronegative substituents at the C?N carbon atom, but the values are. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A series of Pd and Pt chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), of general formulae trans-/cis-[M(py)2Cl2], [M(py)4]Cl2, trans-/cis-[M(py)2Cl4], [M(bpy)Cl2], [M(bpy)Cl4], [M(phen)Cl2], [M(phen)Cl4], where M = Pd, Pt, was studied by 1H, 195Pt, and 15N NMR. The 90-140 ppm low-frequency 15N coordination shifts are discussed in terms of such structural features of the complexes as the type of platinide metal, oxidation state, coordination sphere geometry and the type of ligand. The results of quantum-chemical NMR calculations were compared with the experimental 15N coordination shifts, well reproducing their magnitude and correlation with the molecular structure.  相似文献   

14.
The 15N as well as 1H and 13C chemical shifts of nine substituted tetrazolopyridines and their corresponding tetrazolopyridinium salts have been determined by using NMR spectroscopy at the natural abundance level of all nuclei in CD3CN. In this paper, we report, for the first time, the N‐alkylation reaction of electron deficient tetrazolopyridines. The treatment of tetrazolopyridines 5–13 with one equivalent of trialkyloxonium tetrafluoroborate leads to a mixture of two isomers, i.e. N3‐ and N2‐alkyl tetrazolo[1,5‐a]pyridinium salts. It has been observed that the N3‐isomer is always the major isomer, except in the case of the CF3 substituent, where the two isomers are obtained in the same amount. The quaternary tetrazolopyridinium nitrogen N3 is shielded by around 100 ppm (parts per million) with respect to the parent tetrazolopyridine. Experimental data are interpreted by means of density functional theory (DFT) calculations, including solvent‐induced effects, within the conductor‐like polarizable continuum model (CPCM). Good agreements between theoretical and experimental 1H, 13C and 15N NMR were found. The combination of multinuclear magnetic resonance spectroscopy with gauge including atomic orbital (GIAO) DFT calculations is a powerful tool in the structural elucidation for both neutral and cationic heterocycles and in the determination of the orientation of N‐alkylation of tetrazolopyridines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The 1H{15N} NMR spectrum of 5,7‐diphenyl‐1,2,4‐triazolo[1,5‐a]‐pyrimidine ( 3 ) was measured by GHMQC, unambiguously assigned and compared with the spectra of 1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) and 5,7‐dimethyl‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 2 ). A series of Au(III) chloride complexes of general formula AuLCl3, where L = 1 , 2 , 3 , was synthesized and studied by 1HH{15N} GHMQC and 1H{13C} GHMBC. Low‐frequency shifts of 72–74 ppm (15N) and 5–6 ppm (13C) were observed upon complexation by Au(III) ions for the coordination site N‐3 and adjacent C‐2, C‐3a atoms, respectively. The 13C signals of C‐5, C‐6, C‐7 and the 1H resonances of H‐2, H‐6 were shifted to higher frequency. Comparison with analogous Pd(II), Pt(II) and Pt(IV) complexes revealed that in the case of Au(III) coordination the 15N shifts were relatively smaller, whereas those for 13C and 1H were larger. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
The 15N and 13C chemical shifts of 6‐(fluoro, chloro, bromo, and iodo)purine 2′‐deoxynucleoside derivatives in deuterated chloroform were measured. The 15N chemical shifts were determined by the 1H? 15N HMBC method, and complete 15N chemical‐shift assignments were made with the aid of density functional theory (DFT) calculations. Inclusion of solvation effects significantly improved the precision of the calculations of 15N chemical shifts. Halogen‐substitution effects on the 15N and 13C chemical shifts of purine rings are discussed in the context of DFT results. The experimental coupling constants for 19F interacting with 15N and 13C of the 6‐fluoropurine 2‐deoxynuleoside are compared with those from DFT calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The 1H and 13C NMR spectral study of several biologically active derivatives of 8‐quinolinol have been made through extensive NMR studies including homodecoupling and 2D‐NMR experiments such as COSY‐45°, NOESY, and HeteroCOSY. Electron donating resonance and electron withdrawing inductive effect of several groups showed marked changes in chemical shifts of nuclei at the seventh positions of O‐substituted quinolinols (2–15). Although in N‐alkyl, 8‐alkoxyquinolinium halides (16–21), ring A rightly showed low frequency chemical shift values. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The NMR spectroscopic data of a series of thirty‐four 3‐acylpyrido[1,2‐a]pyrimidinium salts are analyzed, which were prepared as either perchlorates or chlorides. Methyl group substituted 3‐aroyltetrahydropyrido[1,2‐a]pyrimidines with the methyl substituent in positions 6, 8 and 9 as well as both in positions 6 and 8 were investigated bearing various aroyl substituents. Unequivocal assignment of all resonances was achieved via two‐dimensional 1H,1H‐COSY measurements, 1H,13C and 1H,15N HSQC as well as HMBC experiments, and important diagnostic CH and NH couplings in the heteroaromatic ring system are evaluated. The influence of the methyl substituents was analyzed on the proton, carbon and nitrogen shifts. A significant effect of the counter ion on some chemical shifts of the nuclei under discussion of the pyridopyrimidines is found, allowing the indirect detection of the anion, which is confirmed by direct measurement of the 35Cl nucleus of the perchlorates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
The complete 1H, 13C and 15N NMR signals assignments of some new isopentenyladenosine analogues were achieved using one‐ and two‐dimensional experiments (gs‐NOESY, gs‐HMQC and gs‐HMBC). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号