首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbazole ( 1 ) undergoes electrophilic aromatic substitution with various iodinating reagents. Although, 3‐iodocarbazole ( 1b ) and 3,6‐diiodocarbazole ( 1d ) obtained by iodination of carbazole were isolated and characterized sometime ago, 1‐iodocarbazole ( 1a ), 1,6‐diiodocarbazole ( 1c ) and 1,3,6‐triiodocarbazole ( 1e ) had never been isolated from the reaction mixture. The preparation and subsequent isolation and characterization of 1a, 1b, 1c, 1d and 1e are reported (mp, tr, Rf, 1H‐nmr, 13C‐nmr and ms). As iodinating reagents, NaIO4/I2 and NaIO4/KI mixtures in (i) ethanol doped with catalytical amount of sulfuric acid and in (ii) acetic acid, and N‐odosuccinimide and N‐iodosuccinimide‐silica gel in dichloromethane and in chloroform have been used and their uses have been compared. The iodination reaction of different carbazole derivatives such as 2‐acetoxycarbazole ( 2 ), 3‐bromocarbazole (3) and 3‐nitrocarbazole ( 4 ) was also studied and the corresponding iododerivatives, 2a, 2b, 2c, 3a, 3b, 4a and 4b , are described for the first time. Semiempirical PM3 calculations have been performed in order to predict reactivity of carbazole ( 1 ), substituted carbazoles (2‐4) and iodocarbazoles ( 1a‐1e, 2a‐2c, 3a‐3b, 4a and 4b ) (Scheme 1). Theoretical and experimental results are discussed briefly.  相似文献   

2.
β‐Carbolines ( 1–5 ) undergo electrophilic aromatic substitution with N‐bromosuccinimide under different experimental conditions. Although 6‐bromo‐nor‐harmane ( la ) obtained by bromination of nor‐harmane ( 1 ) was isolated and fully characterized sometime ago, the other bromoderivatives of nor‐harmane ( 1b‐1e ) and harmane ( 2a‐2e ) were partially described as part of the reaction mixtures. The preparation and subsequent isolation, purification and full characterization of 1b, 1c, 1d, 1e, 2a, 2b, 2c, 2d, 2e are reported (mp, R f, 1H‐nmr, 13C‐nmr and ms) together with the preparation, isolation and charaterization, for the first time, of the bromoderivatives obtained from harmine ( 3a‐3e ), harmol ( 4a, 4b ) and 7‐acetylharmol ( 5a‐5c ). As brominating reagent N‐bromosuccinimide and N‐bromosuccinimide‐silica gel in dichloromethane and in chloroform as well as the β‐carboline ‐ N‐bomosuccinimide solid mixture have been used and their uses have been compared. Semiempirical AMI and PM3 calculations have been performed in order to predict reactivity in terms of the energies of HOMO, HOMO‐LUMO difference and in terms of the charge density of β‐carbolines ( 1–5 ) and bromo‐β‐carbolines ( 1a‐1e, 2a‐2e, 3a‐3e, 4a, 4b, 5a, 5b and 5c ) (Scheme 1). Theoretical and experimental results are discussed briefly.  相似文献   

3.
β‐Carbolines (1‐5) undergo electrophilic aromatic substitution with N‐chlorosuccinimide and N‐chlorobenzotriazole under different experimental conditions. Although 6‐chloro and 8‐chloro‐nor‐har‐mane ( 1a and 1b ) and 6‐chloro and 8‐chloro‐harmane ( 2a and 2b ) obtained by chlorination with sodium hypochlorite of nor‐harmane (1) and harmane (2) were isolated and fully characterized recently, other chloroderivatives of nor‐harmane and harmane have never been described. The preparation and subsequent isolation, purification and full characterization of the dichloroderivatives 1c and 2c are reported (mp, Rf, 1H nmr, 13C nmr and ms) together with the preparation, isolation and charaterization, for the first time, of the chloroderivatives obtained from harmine (3a‐3c) , harmol (4a‐4b) and 7‐acetylharmol (5a‐5c) . As chlorinating reagent N‐chlorosuccinimide and N‐chlorobenzotriazole in solution as well as the β‐carboline ‐N‐chlorosuccinimide solid mixture have been used and their uses have been compared. Gc (tR) and gc‐ms (m/z) data for other monochloro derivative of nor‐harmane (1d) and monochloro‐ and dichloroderivatives of harmane ( 2d and 2e‐2f ), obtained in trace amounts, are also included (Scheme 1 and Table I). Semiempirical AM1 and PM3 calculations have been performed in order to predict reactivity in terms of the energies of HOMO‐LUMO difference and in terms of the charge density of β‐carbolines (1‐5) and chloro‐β‐carbolines ( 1a‐1c, 2a‐2c, 3a‐3c, 4a‐4b , and 5a‐5c ) (Scheme 1). Theoretical and experimental results are discussed briefly.  相似文献   

4.
The 1H and 13C nmr spectra of the rotational isomers 3a and 3b of 6‐N‐methyl‐N‐formylaminomefhyl)‐thioquinanthrene were completely assigned with a combination of 1D and 2D nmr techniques. The key‐parts of this methodology were long‐range proton‐carbon correlations and NOE experiments with N‐methyl‐N‐formylaminomethyl substituent. The X‐ray study of 4‐methyl‐2‐N‐methyl‐N‐formylaminomethyl)quinoline 4a as well as 1H and 13C nmr spectra show that N‐methyl‐N‐formylaminomethyl substituent in 4a and 4b has a different steric arrangement than the same substituent in 3a and 3b .  相似文献   

5.
The NCN‐pincer Pd‐complex‐bound norvalines Boc‐D /L ‐[PdCl(dpb)]Nva‐OMe ( 1 ) were synthesized in multigram quantities. The molecular structure and absolute configuration of 1 were unequivocally determined by single‐crystal X‐ray structure analysis. The robustness of 1 under acidic/basic conditions provides a wide range of N‐/C‐terminus convertibility based on the related synthetic transformations. Installation of a variety of functional groups into the N‐/C‐terminus of 1 was readily carried out through N‐Boc‐ or C‐methyl ester deprotection and subsequent condensations with carboxylic acids, R1COOH, or amines, R2NH2, to give the corresponding N‐/C‐functionalized norvalines R1‐D /L ‐[PdCl(dpb)]Nva‐R2 2 – 9 . The dipeptide bearing two Pd units 10 was successfully synthesized through the condensation of C‐free 1 with N‐free 1 . The robustness of these Pd‐bound norvalines was adequately demonstrated by the preservation of the optical purity and Pd unit during the synthetic transformations. The lipophilic Pd‐bound norvalines L ‐ 2 , Boc‐L ‐[PdCl(dpb)]Nva‐NH‐n‐C11H23, and L ‐ 4 , n‐C4H9CO‐L ‐[PdCl(dpb)]Nva‐NH‐n‐C11H23, self‐assembled in aromatic solvents to afford supramolecular gels. The assembled structures in a thermodynamically stable single crystal of L ‐ 2 and kinetically stable supramolecular aggregates of L ‐ 2 were precisely elucidated by cryo‐TEM, WAX, SAXS, UV/Vis, IR analyses, and single‐crystal X‐ray crystallography. An antiparallel β‐sheet‐type aggregate consisting of an infinite one‐dimensional hydrogen‐bonding network of amide groups and π‐stacking of PdCl(dpb) moieties was observed in the supramolecular gel fiber of L ‐ 2 , even though discrete dimers are assembled through hydrogen bonding in the thermodynamically stable single crystal of L ‐ 2 . The disparate DSC profiles of the single crystal and xerogel of L ‐ 2 indicate different thermodynamics of the molecular assembly process.  相似文献   

6.
Novel acetylenic monomers containing Schiff‐base and amino groups, (S)‐N‐(4‐ethynylbenzylidene)‐1‐phenylethanamine ( 1a ), (R)‐N‐(4‐ethynylbenzylidene)‐1‐phenylethanamine ( 1b ), N‐(4‐ethynylbenzylidene)‐1‐phenylethanamine ( 1c ), (R)‐N‐(4‐ethynylbenzyl)‐1‐phenylethanamine ( 1d ), and (R)‐N‐(4‐ethynylbenzyl)‐1‐phenylethanamine ( 1e ) were synthesized and polymerized with [(nbd)RhCl]2/Et3N catalyst to afford the corresponding polymers 2a ‐ e with moderate molecular weights (Mn = 9000–60,000) in high yields (85–97%). All the polymers were soluble in common organic solvents including toluene, CHCl3, CH2Cl2, THF, and DMF. Large optical rotations and strong CD signals demonstrated that 2a , 2b , 2d , and 2e take helical structures with a predominantly one‐handed screw sense. The effects of solvents and temperature revealed that these polymers took dynamic helical structure based on the steric effect of side groups. The CD patterns of 2d and 2e containing free amino moieties were completely inverted by the addition of benzoic acid. Upon further addition of NaOH, the CD pattern returned to the original one, indicating the reversible conformational change of these polymers according to pH. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5248–5256  相似文献   

7.
By heating carbazole ( 1 ) with aluminum trichloride and benzoyl chloride four benzoylcarbazole derivatives were obtained: N-benzoylcarbazole ( 2 ), 1-benzoylcarbazole ( 3 ), 3-benzoylcarbazole ( 4 ) and 3,6-dibenzoylcarbazole ( 5 ). The complete characterization of benzoylcarbazole derivatives 2–5 was performed by physical and spectroscopical methods (mp, tlc Rf, glc Tr, uv, ir, 1H nmr, 13C nmr and ms).  相似文献   

8.
N‐Substituted aminoethyl groups were attached to 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid (DO3A) with the aim to design pH‐responsive LnIII complexes based on the pH‐dependent on/off ligation of the amine nitrogen to the metal ion. The following ligands were synthesized: AE ‐ DO3A (aminoethyl‐DO3A), MAE ‐ DO3A (N‐methylaminoethyl‐DO3A), DMAE ‐ DO3A (N,N‐dimethylaminoethyl‐DO3A) and MEM ‐ AE ‐ DO3A (N‐methoxyethyl‐N‐methylaminoethyl‐DO3A). The physicochemical properties of the LnIII complexes were investigated for the evaluation of their potential applicability as magnetic resonance imaging (MRI) contrast agents. In particular, a 1H and 17O NMR relaxometric study was carried out for these GdIII complexes at two different pH values: at basic pH (pendant amino group coordinated to the metal centre) and at acidic pH (protonated amine, not interacting with the metal ion). EuIII complexes allow one to estimate the number of inner‐sphere water molecules through luminescence lifetime measurements and obtain some structural information through variable‐temperature (VT) high‐resolution 1H NMR studies. Equilibria between differently hydrated species were found for most of the complexes at both acidic and basic pH. The thermodynamic stability of CaII, ZnII, CuII and LnIII complexes and kinetics of formation and dissociation reactions of LnIII complexes of AE ‐ DO3A and DMAE ‐ DO3A were investigated showing stabilities comparable to currently approved GdIII‐based CAs. In detail, higher total basicity (Σlog KiH) and higher stability constants of LnIII complexes were found for AE ‐ DO3A with respect to DMAE ‐ DO3A (i.e., log KGd‐ AE‐DO3A =22.40 and log KGd‐ DMAE‐DO3A =20.56). The transmetallation reactions of GdIII complexes are very slow (Gd‐ AE ‐ DO3A : t1/2=2.7×104 h; Gd‐ DMAE ‐ DO3A : 1.1×105 h at pH 7.4 and 298 K) and occur through proton‐assisted dissociation.  相似文献   

9.
Five new diorganotin N‐[(3‐methoxy‐2‐oxyphenyl)methylene] tyrosinates, R2Sn[2‐O‐3‐MeOC6H3CH=NCH (CH2C6H4OH‐4)COO] (R = Me, 1 ; Et, 2 ; Bu, 3 ; Cy, 4 ; Ph, 5 ), have been synthesized and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra, and the X‐ray single crystal diffraction. In non‐coordinated solvent, complexes 1 – 5 have penta‐coordinated tin atom. In the solid state, 1 – 3 are centrosymmetric dimmers in which each tin atom is seven‐coordinated in a distorted pentagonal bipyramid, and 4 displays discrete molecular structure with distorted trigonal bipyramidal geometry, and the tin atom of 5 is hexa‐coordinated and possess the distorted octahedral geometry with a coordinational methanol molecule. The intermolecular O‐H???O hydrogen bonds in 1 – 4 link molecules into the different one‐dimensional supramolecular chain with R22 (30) or R22 (20) macrocycles, and the molecules of 5 are joined into a two‐dimensional supramolecular network containing R44 (24) and R44 (28) two macrocycles. Bioassay results against human tumour cell HeLa indicated that 3 ‐ 5 belonged to the efficient cytostatic agents and the activity decreased in the order 4 > 3 > 5 > 2 > 1. The fluorescence determinations show the complexes may be explored for potential luminescent materials.  相似文献   

10.
Contact with SO2 causes almost immediate dissolution of tetraalkylammonium halides, R4NX, (R = CH3 (Me), X = I; R = C2H5 (Et), X = Cl, Br, I; R = C4H9 (nBu), X = Cl, Br), with the formation of an adduct, [R4N]+[(SO2)nX] (n = 1–4). Vapor pressure measurements indicate the proclivity for SO2 uptake follows the order N(CH3)4+ < N(C2H5)4+ < N(C4H9)4+. This trend is in accord with the Jenkins–Passmore volume‐based thermodynamic model. Born–Haber cycles, incorporating the lattice energy and gas phase energy terms, are used to evaluate the energetic feasibility of reactions. Density functional theory calculations (B3PW91; 6‐311+G(3df)) have been used to calculate the energetics of (SO2)nX (X = Cl and Br) anions in the gas phase. The experimental studies show that tetraalkylammonium halides are feasible sorbents for SO2. In order to correlate the theoretical model, experimental enthalpy, Δr and entropy, Δr changes have been determined by the van't Hoff method for the binding of one SO2 molecule to (C2H5)4NCl, resulting in the liquid adduct (C2H5)4NCl · SO2. The structure of the analogous 1:1 bromide adduct, (C2H5)4NBr · SO2, has been determined by single‐crystal X‐ray diffraction (monoclinic, P21/c, a = 9.1409(14) Å, b = 12.3790(19) Å, c = 11.3851(17) Å, β = 107.952(2)°, V = 1225.6(3) Å3). The structure consists of discrete alkylammonium cations, bromide anions and SO2 molecules with short contacts between the anion and SO2 molecules. The (C2H5)4N+ cationadopts a transoid conformation with D2d symmetry, and represents a rare example of a well‐ordered (C2H5)4N+ cation in a crystal structure. The Br anions and SO2 molecules forms a chain, (SO2Br)n, with bifurcated contacts. Non‐bonding electron pairs on the halide anions engage in electrostatic interactions with the sulfur atoms and charge‐transfer interactions with the antibonding S–O orbitals of the bound SO2 moiety. Raman and 17O NMR spectra provide compelling evidence for a charge‐transfer interaction between SO2 molecules and the halide ions.  相似文献   

11.
Crystals of the bis(tert‐butyl)silylene (DTBS) derivatives of the tartaric acids were synthesized from D ‐, L ‐, rac‐, and meso‐tartaric acid and DTBS bis(trifluoromethanesulfonate): two polymorphs of Si2tBu4(L ‐Tart1,2;3,4H–4) (L ‐ 1a and L ‐ 1b ), the mirror image of the denser modification (D ‐ 1b ) as well as the racemate ( 2 ), and the meso analogue Si2tBu4(meso‐Tart1,3;2,4H–4) ( 3 ). The structures were determined by single‐crystal X‐ray diffraction. The threo‐configured D ‐ and L ‐ (and rac‐) tartrates were coordinated by two tBu2Si units forming five‐membered chelate rings, whereas the erythro‐configured meso‐tartrate formed six‐membered chelate rings. The new compounds were analyzed by NMR techniques, including 29Si NMR spectroscopy, and single‐crystal X‐ray crystallography.  相似文献   

12.
This contribution reports on a new family of NiII pincer complexes featuring phosphinite and functional imidazolyl arms. The proligands RPIMCHOPR′ react at room temperature with NiII precursors to give the corresponding complexes [(RPIMCOPR′)NiBr], where RPIMCOPRPCP‐{2‐(R′2PO),6‐(R2PC3H2N2)C6H3}, R=iPr, R′=iPr ( 3 b , 84 %) or Ph ( 3 c , 45 %). Selective N‐methylation of the imidazole imine moiety in 3 b by MeOTf (OTf=OSO2CF3) gave the corresponding imidazoliophosphine [(iPrPIMIOCOPiPr)NiBr][OTf], 4 b , in 89 % yield (iPrPIMIOCOPiPrPCP‐{2‐(iPr2PO),6‐(iPr2PC4H5N2)C6H3}). Treating 4 b with NaOEt led to the NHC derivative [(NHCCOPiPr)NiBr], 5 b , in 47 % yield (NHCCOPiPrPCC‐{2‐(iPr2PO),6‐(C4H5N2)C6H3)}). The bromo derivatives 3–5 were then treated with AgOTf in acetonitrile to give the corresponding cationic species [(RPIMCOPR)Ni(MeCN)][OTf] [R=Ph, 6 a (89 %) or iPr, 6 b (90 %)], [(RPIMIOCOPR)Ni(MeCN)][OTf]2 [R=Ph, 7 a (79 %) or iPr, 7 b (88 %)], and [(NHCCOPR)Ni(MeCN)][OTf] [R=Ph, 8 a (85 %) or iPr, 8 b (84 %)]. All new complexes have been characterized by NMR and IR spectroscopy, whereas 3 b , 3 c , 5 b , 6 b , and 8 a were also subjected to X‐ray diffraction studies. The acetonitrile adducts 6 – 8 were further studied by using various theoretical analysis tools. In the presence of excess nitrile and amine, the cationic acetonitrile adducts 6 – 8 catalyze hydroamination of nitriles to give unsymmetrical amidines with catalytic turnover numbers of up to 95.  相似文献   

13.
Quinoline bridged imidazolium precursors 5,8‐bis(NR‐imidazolylidenylmethylene)quinoline PF6 salts [H2L](PF6)2 [R = Me ( 1a ), R = naphthylmethyl ( 1b )] were prepared by quaternization of N‐methylimidazole and N‐naphthylmethylimidazole with 5,8‐bis(bromomethyl)quinoline, respectively. Reaction of the imidazolium ligands 1a and 1b with Hg(OAc)2 and Ag2O in acetonitrile gave the macrocyclic transition metal carbene complexes [Hg2L2](PF6)4 ( 2a and 2b ) and [Ag2L2](PF6)2 ( 3a and 3b ), respectively. All the N‐heterocyclic carbene complexes were characterized in detail by NMR, ESI‐MS, and elemental analysis. Structures of complexes 2a and 3a were determined by X‐ray diffraction studies. Structural studies revealed that the coordination arrangement of the central mercury atom in complex 2a displays a tricoordinate mode and the molecular conformation results in a“closed” form with the bridging quinoline functionality in the macrocycle, whereas the silver complex 3a does not show an coordiantion between the bridging quinoline and the AgI ion, which results in an “open” conformation of the macrocycle. The HgII and AgI NHC complexes showed similar UV absorption and luminescence in acetonitrile solutions.  相似文献   

14.
Regioselective reactions of morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide ( 1 ) with electrophiles and nucleophiles were studied. The compound ( 1 ) reacts with alkyl halides in basic medium to afford S‐substituted isothiourea derivatives, with amines to give 1,1‐disubstituted‐3‐(2‐phenyl‐3H‐quinazolin‐4‐ylidene) thioureas and l‐substituted‐3‐(2‐phenyl‐quinazolin‐4‐yl) thioureas via transami‐nation reaction. The reaction of ( 1 ) with amines in the presence of H2O2 provided N4‐disubstituted‐N'4‐(2‐phenylquinazolin‐4‐yl)morpholin‐4‐carboximidamide via oxidative desulfurization. Estimation of reactivity sites on ( 1 ) was supported using the ab initio (HF/6‐31G**) quantum chemistry calculations. The ir, 1H nmr, 13C nmr, mass spectroscopy and x‐ray identified the isolated products.  相似文献   

15.
Reactions of copper(II) acetate with N1‐subsitituted salicylaldehyde thiosemicarbazones [R1R2C2=N3–N2H–C1(=S)–N1HR3;R1 = 2‐HO–C6H4–, R2 = H : R3 = Me (H2L1), Et (H2L2)] are described. Copper(II) acetate was reacted with H2L1 and H2L2 ligands in the presence of polypyridyl co‐ligands, and this led to the formation ofmononuclear complexes, [Cu(κ3‐O, N, S‐L1)(κ2‐N, N‐bipy)] ( 1 ),[Cu(κ3‐O, N, S‐L)(κ2‐N, N‐phen)] [L = L1 ( 3 ), L2 ( 4 )], [Cu(κ3‐O, N, S‐L)(κ2‐N, N‐tmphen)] [L =L1 ( 5 ), L2 ( 6 )] and a dinuclear complex, [Cu2L22(bipy)] ( 2 ) (bipy = 2, 2′‐bipyridine, phen = 1, 10‐phenanthroline, tmphen = 3, 4, 7, 8‐tetramethyl‐1, 10‐phenanthroline). In dinuclear complex 2 , one ligand is O, N3,S‐chelating, while second is O, N3,S‐chelation‐cum‐N2‐bridging; and in all others thio‐ligands are O, N3,S‐chelating. The μeff values for the complexes lie in the range of 1.79–1.83 BM. Complexes 1 , 3 – 6 have square pyramidal arrangement, whereas complex 2 has two independent molecules in the crystal lattice, and each molecule has trigonal bipyramidal square planar (5:4) coordination pair. Complexes 2 , 4 , and 6 showed fluorescence properties.  相似文献   

16.
Enantioseparation of α,α‐diphenyl‐2‐pyrrolidinemethanol (D2PM) and methylphenidate (MPH; Ritalin®) using (R)‐(?)‐4‐(N,N‐dimethylaminosulfonyl)‐7‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐2,1,3‐benzoxadiazole as the chiral derivatization reagent has been achieved for the first time, and a simple, reliable detection method using HPLC with fluorescence detection has been developed. D2PM and MPH have been derivatized with (R)‐(?)‐4‐(N,N‐dimethylaminosulfonyl)‐7‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐2,1,3‐benzoxadiazole at 55°C for 15 min. The derivatives of D2PM and MPH have been separated, completely and rapidly, using a reversed‐phase system within 16 min (resolution factor (Rs)=1.60 and 2.53, respectively). The detection limits of (R)‐ and (S)‐D2PM were found to be 6.8 and 13 ng/mL, respectively, and those of D ‐ and L ‐threo‐MPH were 61 and 66 ng/mL, respectively (S/N=3). The proposed method was successfully applied to the analysis of rat plasma, where the rats were separately dosed with D2PM and MPH (Ritalin).  相似文献   

17.
Sr5[NbN4]N (transparent, red single crystals) was synthesized by reaction of Sr2N with Nb under nitrogen at ambient pressure and 1223 K. The crystal structure was solved and refined in the space group Pbcm (no. 57), Z = 4, with lattice constants a = 646.6(3) pm, b = 1792.5(9) pm, c = 729.8(4) pm, and R = 0.019, wR2 = 0.034. The crystal structure contains both isolated tetrahedra [NbN4]7‐ as well as chains of corner sharing octahedra 1(Sr4Sr2/2N7+). Strontium is irregularly coordinated by nitrogen (CN = 4 ‐ 6, Sr‐N: 252.3(4) ‐ 340.8(3) pm); nitrogen is located in a distorted octahedral environment by strontium and niobium (Nb‐N: 194.5(4) ‐ 199.2(2) pm). By formal reduction of the structural building units to their centers a close structural relationship to both the NiAs and the CaSi type structure is evident.  相似文献   

18.
Polycrystalline alunite‐d6 KAl3(OD)6(SO4)2, prepared by hydrothermal reaction of Al2(SO4)3, K2SO4 and D2SO4, was studied by neutron powder diffraction performed on the diffractometer E2 (HMI‐BENSC, Berlin). Rietveld refinement of the data set for T = 2 K yielded the crystallographic data: space group R3m, Z = 3, trigonal setting, a = 694.3(1) pm, c = 1722.7(2) pm, N(I/σ(I) > 1) = 172, N(Var.) = 19, Rp = 0.036, wRp = 0.046, RB(I/σ(I) > 1) = 0.020. The deuterium nuclei could be located precisely. Three equivalent O–D bonds with nuclear distances r(O(4)–D) = 96.6(3) pm directed to each of the terminal oxygen atoms of the SO4 groups are found. Partial substitution of K+ by D3O+ was also considered in the refinement procedure. In good agreement with results of other methods a site occupation fraction n(D3O+) = 0.0104 was obtained.  相似文献   

19.
The two-stage electrosynthesis of 4-iodosubstituted pyrazole derivatives was performed. At the first stage, KIO3 was obtained at the Ni anode under the undivided galvanostatic conditions of electrolysis of an aqueous alkaline solution of KI (or I2) at the Ni anode. At the second stage, pyrazole and its derivatives were iodinated in the heterophase (H2O-CHCl3 (CCl4)) medium by the KIO3-KI (or KIO3-I2) system in the presence of H2SO4. The yields of iodopyrazoles were 74–92%. The electrochemical iodination of anisole, 2-methylpyrazole, and thiophene was carried out to form 4-iodoanisole (88% yield), 4,5-diiodo-2-methylimidazole (54% yield), and a mixture of 2-iodothiophene (60% yield) and 2,5-diiodothiophene (4% yield).  相似文献   

20.
A class of extended 2,5‐disubstituted‐1,3,4‐oxadiazoles R1‐C6H4‐{OC2N2}‐C6H4‐R2 (R1=R2=C10H21O 1 a , p‐C10H21O‐C6H4‐C?C 3 a , p‐CH3O‐C6H4‐C?C 3 b ; R1=C10H21O, R2=CH3O 1 b , (CH3)2N 1 c ; F 1 d ; R1=C10H21O‐C6H4‐C?C, R2=C10H21O 2 a , CH3O 2 b , (CH3)2N 2 c , F 2 d ) were prepared, and their liquid‐crystalline properties were examined. In CH2Cl2 solution, these compounds displayed a room‐temperature emission with λmax at 340471 nm and quantum yields of 0.730.97. Compounds 1 d , 2 a – 2 d , and 3 a exhibited various thermotropic mesophases (monotropic, enantiotropic nematic/smectic), which were examined by polarized‐light optical microscopy and differential scanning calorimetry. Structure determination by a direct‐space approach using simulated annealing or parallel tempering of the powder X‐ray diffraction data revealed distinctive crystal‐packing arrangements for mesogenic molecules 2 b and 3 a , leading to different nematic mesophase behavior, with 2 b being monotropic and 3 a enantiotropic in the narrow temperature range of 200210 °C. The structural transitions associated with these crystalline solids and their mesophases were studied by variable‐temperature X‐ray diffractometry. Nondestructive phase transitions (crystal‐to‐crystal, crystal‐to‐mesophase, mesophase‐to‐liquid) were observed in the diffractograms of 1 b, 1 d , 2 b, 2 d , and 3 a measured at 25200 °C. Powder X‐ray diffraction and small‐angle X‐ray scattering data revealed that the structure of the annealed solid residue 2 b reverted to its original crystal/molecular packing when the isotropic liquid was cooled to room temperature. Structure–property relationships within these mesomorphic solids are discussed in the context of their molecular structures and intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号