首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the preparation of polyaniline (PANI‐EB) by aniline oxidation with KIO3 and the purification of the resulting dedoped polymer by an acetone extraction step to eliminate undesired by‐products from polyaniline, which could generate some safety concerns in the application and use of PANI. Excellent homogeneous and electrically conducting composite films can be prepared from chloroform solutions of purified PANI doped with camphorsulfonic acid in presence of cis‐1,4‐polybutadiene as the film‐forming agent. These films have been characterized by FT‐IR and UV‐VIS‐NIR spectroscopy. A method to synthesisze PANI directly doped with dodecylbenzenesulfonic acid (DBSA) is also reported. DBSA‐doped‐PANI was then used to prepare composites with polyphenylacetylene (PPA) by growing homogeneous films from chloroform solution. These films were conductive and were studied by FT‐IR and UV‐VIS‐NIR spectroscopy. In view of the application of these composites as gas sensors or in “electronic noses”, a short discussion is presented about the criteria used in the selection of the chemical nature of the host polymer where doped PANI is included to confer electrical conductivity. The interaction between the molecules to be detected and the polymeric sensing surface is discussed in terms of physisorption, chemisorption and charge‐transfer‐complex formation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
《European Polymer Journal》2006,42(8):1716-1727
Blends of poly(butadiene-co-acrylonitrile) elastomer [NBR] and polyaniline dodecylbenzenesulfonate [PAni.DBSA], with electrical conductivities up to 10−2 S cm−1, have been prepared by solution mixing and casting. Miscibility was maximised for NBR with high acrylonitrile (ACN) content, as predicted on the basis of simple solubility parameter calculations. Blends prepared using NBR with 48 wt% ACN had the lowest electrical conductivity percolation thresholds, and were much more conductive than previous thermally mixed blends. Optical and electron micrographs of blends prepared from NBR 48 wt% ACN also showed the lowest levels of phase separation. The FT-IR spectra of NBR-PAni.DBSA blends resembled a superposition of the spectra of the pure materials, but with significant peak shifts due to changing intermolecular interactions between the polymers. Under DSC analysis, thermal events for blends prepared with NBR 48 wt% ACN also showed the largest temperature shifts relative to those for the pure polymers, supporting the other evidence for interaction between the two polymers.  相似文献   

3.
Aniline was polymerized in the presence of poly(vinyl chloride) (PVC) powders in hydrochloric acid to in situ prepare poly(vinyl chloride)/polyaniline (PVC/PANI) composite particles. UV‐vis spectra and FT‐IR spectra indicate PANI in PVC/PANI composite particles possessed a higher oxidation state with decreased aniline content in reactants. Both conductivity and impact strength of the dodecylbenzenesulfonic acid (DBSA) doped PANI composites (PVC/PANI‐DBSA), which were compression molded from the in situ prepared PVC/PANI particles, increase with the pressing temperature and decrease with the increase of DBSA doped PANI (PANI‐DBSA) loading. An excellent electric conductivity of 5.06 × 10?2 S/cm and impact strength of 0.518 KJ/m2 could be achieved for the in situ synthesized and subsequently compression molded composite. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Ferrofluid containing highly conductive polyaniline (PANI) was prepared, in which soluble PANI solutions dopedwith 10-camphorsulfonic acid (CSA) and dodecyl benzenesulfonic acid (DBSA) were used as the basic solution and Fe_3O_4nanoparticles (d = 10 nm) as the magnetic material. Moreover, the freestanding films of the resulting ferrofluid can beobtained by an evaporation method. The electrical and magnetic properties of the ferrofluid or its films can be adjustedthrough changing the content of PANI and Fe_3O_4. High saturated magnetization (≈ 30 emu/g) and high conductivity(≈ 250 S/cm) of the composite films can be achieved when the composite film contains 26.6 wt% of Fe_3O_4. In particular, itwas found that the composite films exhibit a super-paramagnetic behavior (Hc = 0) attributed to the size of Fe_3O_4 particles on the nanometer scale.  相似文献   

5.
The electrically conductive polypyrrole/dodecylbenzene sulfonic acid/poly(N‐isopropylacrylamide‐co‐acrylic acid) (PPy/DBSA/poly(NIPAAm‐co‐AA)) composite microgels were synthesized by a chemical oxidation of pyrrole in the presence of DBSA as the primary dopant, and poly(NIPAAm‐co‐AA) microgels as the polymeric codopant and template, in which APS was used as the oxidant. It was proposed to prepare “intelligent” polymer microgel particles containing both thermosensitive and electrically conducting properties. The polymerization of pyrrole took place directly inside the microgel networks, leading to formation of composite microgels and the morphology was observed by transmission electron microscope. PPy particles interacted strongly with microgels, as the acid groups of microgels acted as the polymeric codopant. The composite microgels thus formed showed electrically conducting behavior dependent on humidity and temperature. At temperatures lower than lower critical solution temperature, the conductivity decreased with increasing the humidity and a small hysteresis phenomenon was observed. The hysteresis became indistinct when temperature was near volume phase transition temperature. However, after the treatment of high temperature and high humidity, the conductivity increased surprisingly due to the structure reorganization inside the composite microgels. The distinctive functionality of the PPy composite microgels was expected to be utilized in many attractive applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1648–1659, 2006  相似文献   

6.
In the present work new conductive nanostructures based on poly (acrylamide-co-maleic acid) (PAAMA) and polyaniline were prepared. The template polymerization of aniline was conducted in the aqueous solution of PAAMA with different ratios (w/w%) of aniline to polyacid. The prepared composite was characterized by FTIR and UV–Vis spectroscopy, SEM, electrical conductivity measurements and solubility tests.  相似文献   

7.
Multi‐walled carbon (MWCNT) and tungsten disulfide (INT‐WS2) nanotubes are materials with excellent mechanical properties, high electrical and thermal conductivity. These special properties make them excellent candidates for high strength and electrically conductive polymer nanocomposite applications. In this work, the possibility of the improvement of mechanical, thermal and electrical properties of poly(trimethylene terephthalate) (PTT) by the introduction of MWCNT and INT‐WS2 nanotubes was investigated. The PTT nanocomposites with low loading of nanotubes were prepared by in situ polymerization method. Analysis of the nanocomposites' morphology carried out by SEM and TEM has confirmed that well‐dispersed nanotubes in the PTT matrix were obtained at low loading (<0.5 wt%). Thermal and thermo‐oxidative stability of nanocomposites was not affected by the presence of nanotubes in PTT matrix. Loading with INT‐WS2 up to 0.5 wt% was insufficient to ensure electrical conductivity of PTT nanocomposite films. In the case of nanocomposites filled with MWCNT, it was found that nanotube incorporation leads to increase of electrical conductivity of PTT films by 10 orders of magnitude, approaching a value of 10?3 S/cm at loading of 0.3 wt%. Tensile properties of amorphous and semicrystalline (annealed samples) nanocomposites were affected by the presence of nanotubes. Moreover, the increase in the brittleness of semicrystalline nanocomposites with the increase in MWCNT loading was observed, while the nanocomposites filled with INT‐WS2 were less brittle than neat PTT. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Homogeneous TiO2 single crystals with high exposure of {100} reactive facets were constructed as a seed monolayer on transparent conductive substrates with the desired orientation of reactive facets. A secondary growth process was subsequently carried out on the monolayer seed film to form an axis‐oriented continuous reactive film. Performing secondary growth with different precursors led to optimized conditions for high‐performance photoelectrochemical activity of anatase TiO2 films. Experimental techniques such as UV/Vis absorption spectroscopy, X‐ray diffraction, high‐resolution SEM, and photoelectrochemistry were used to characterize the structural, optical, and photoelectrochemical properties of the as‐synthesized films. As a photoanode in a photoelectrochemical cell, the axis‐oriented reactive film shows a maximum photocurrent density of 0.3 mA cm?2, as opposed to 0.075 mA cm?2 for non‐axis‐oriented (randomly oriented) TiO2 film.  相似文献   

9.
Summary Electrically conductive composites containing high density polyethylene (HDPE) and polyaniline (PANI) - dodecylbenzenesulfonic acid (DBSA) complex were prepared in situ by bulk oxidative polymerization of aniline (ANI) in presence of DBSA. Their thermal behaviour and crystallinity parameters were studied for the first time by using differential scanning calorimetry (DSC). It was found that the presence of the conductive complex does not affect the crystalline structure of the matrix polymer neither during in situ polymerization of ANI in powdered HDPE nor upon heating of HDPE/PANI·DBSA composite up to 180°C followed by fast cooling.  相似文献   

10.
We report a mechanically strong, electrically and thermally conductive, and optically transparent shape‐memory polyurethane composite which was fabricated by introducing a small amount (0.1 wt%) of high‐quality graphene as a filler. Geometrically large (≈4.6 μm2), but highly crystallized few‐layer graphenes, verified by Raman spectroscopy and transmission electron microscopy, were prepared by the sonication of expandable graphite in an organic solvent. Oxygen‐ containing functional groups at the edge plane of graphene were crucial for an effective stress transfer from the graphene to polyurethane. Homogeneously dispersed few‐layered graphene enabled polyurethane to have a high shape recovery force of 1.8 MPa cm−3. Graphene, which is intrinsically stretchable up to 10%, will enable high‐performance composites to be fabricated at relatively low cost and we thus envisage that such composites may replace carbon nanotubes for various applications in the near future.  相似文献   

11.
A DBSA (n‐dodecylbenzene sulfate)‐complexed aniline formaldehyde [AF(DBSA)1.0] was successfully synthesized with excess aniline (compared with formaldehyde) in the presence of n‐dodecylbenzene sulfonic acid (HDBSA), which was complexed with aniline monomer before polymerization. The resin was carefully characterized with 1H and 13C NMR, electron spectroscopy for chemical analysis, and Fourier transform infrared and was demonstrated to be a polymer in which anilines were all complexed with HDBSA and became anilinium salts. A drastic decrease of the maximum absorption wavelength (ultraviolet–visible spectra) of DBSA‐doped polyaniline [PANI(DBSA)0.5] was found when AF(DBSA)1.0 was mixed, and this resulted from the reduced conjugation length. A similar effect on PANI(DBSA)0.5 was found when free HDBSAs were mixed with PANI(DBSA)0.5. Visual inspection with an optical microscope revealed that PANI(DBSA)0.5/AF(DBSA)1.0 gave uniform morphologies in various compositions, showing possible miscibility for this system. X‐ray diffraction patterns of PANI(DBSA)0.5/AF(DBSA)1.0 showed that the layered structure of PANI(DBSA)0.5 was still present but became shorter in the polyblend because of the presence of AF(DBSA)1.0. Solid‐state 13C NMR spectra revealed that the reduced conjugation length was derived from the interaction of alkyl groups between HDBSA, complexed DBSA, and dopant DBSAs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3116–3125, 2005  相似文献   

12.
A new approach for the fabrication of transparent, antireflective, conductive and superhydrophilic multifunctional hybrid films through the layer‐by‐layer (LbL) assembly of reduced graphene oxide (RGO) nanosheets and SiO2 nanoparticles is reported. The RGO nanosheets, SiO2 nanoparticles and films were characterized by means of transmission electron microscopy, UV/Vis absorption spectrophotometry, Raman spectroscopy, atomic force microscopy, contact angle/interface system, and a four‐point probe. It was found that the graphene/SiO2 hybrid films exhibited a significant increase in transmittance as compared with RGO films. The optical, electronic and wetting properties of hybrid films could be manipulated by rational design of the film structure and variation of the cycle number of the LbL assembly. The obtained transparent, conductive, and superhydrophilic graphene/SiO2 hybrid films showed excellent antireflective, antistatic, and antifogging behaviors. The remarkable performance could be attributed to the combination of electrical conductivity of RGO nanosheets and superhydrophilic antireflective surface derived from SiO2 nanoparticles.  相似文献   

13.
Organic thin film nanocomposites, prepared by liquid‐phase exfoliation, were investigated for their superior electrical properties and thermoelectric behavior. Single‐walled carbon nanotubes (SWNT) were stabilized by intrinsically conductive poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in an aqueous solution. The electrical conductivity (σ) was found to increase linearly as 20 to 95 wt % SWNT. At 95 wt % SWNT, these thin films exhibit metallic electrical conductivity (~4.0 × 105 S m?1) that is among the highest values ever reported for a free‐standing, fully organic material. The thermopower (S) remains relatively unaltered as the electrical conductivity increases, leading to a maximum power factor (S2σ) of 140 μW m?1 K?2. This power factor is within an order of magnitude of bismuth telluride, so it is believed that these flexible films could be used for some unique thermoelectric applications requiring mechanical flexibility and printability. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

14.
Poly(ethylene glycol) diacrylate (PEGDA) microgels with tuneable size and porosity find applications as extracellular matrix mimics for tissue-engineering scaffolds, biosensors, and drug carriers. Monodispersed PEGDA microgels were produced by modular droplet microfluidics using the dispersed phase with 49–99 wt% PEGDA, 1 wt% Darocur 2959, and 0–50 wt% water, while the continuous phase was 3.5 wt% silicone-based surfactant dissolved in silicone oil. Pure PEGDA droplets were fully cured within 60 s at the UV light intensity of 75 mW/cm2. The droplets with higher water content required more time for curing. Due to oxygen inhibition, the polymerisation started in the droplet centre and advanced towards the edge, leading to a temporary solid core/liquid shell morphology, confirmed by tracking the Brownian motion of fluorescent latex nanoparticles within a droplet. A volumetric shrinkage during polymerisation was 1–4% for pure PEGDA droplets and 20–32% for the droplets containing 10–40 wt% water. The particle volume increased by 36–50% after swelling in deionised water. The surface smoothness and sphericity of the particles decreased with increasing water content in the dispersed phase. The porosity of swollen particles was controlled from 29.7% to 41.6% by changing the water content in the dispersed phase from 10 wt% to 40 wt%.  相似文献   

15.
The effects of UV irradiation on the properties of Sb5+ doped gel films were studied, which were prepared from stannic chloride (SnCl4·5H2O) and sodium alkoxide (NaOR) modified with benzytone (BzAcH). It was found that the absorption peak at around 335 nm due to the π → π* transition showed the formation of a chelate ring to Sn. The intensity of the absorption band decreased with UV light irradiation at 365 nm from a high‐pressure mercury lamp (250W). This finding showed that the SnO2:Sb gel films modified with BzAcH were photosensitive to UV light. Additionally, this finding was applied to the fabrication of patterns on the SnO2:Sb thin films. A gel film was irradiated through a mask and leached in water. Then a positive pattern was formed on the SnO2:Sb thin films attached to the substrate. After heat treatment, the SnO2:Sb gel films changed into transparent conductive films with an average conductivity of 1.20 × 10?2Ω cm and with a transmission of 97.1%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
We describe a novel class of electrically conductive transparent materials based on multiwalled carbon nanotubes (MWCNTs). Transparent nanocomposites were fabricated by incorporating an aqueous silk fibroin solution into bacterial cellulose membranes. The transparent nanocomposites had a high transmittance in the visible and infrared regions, regardless of the bacterial cellulose fiber content, due to the nanosize effect of the bacterial cellulose nanofibrils. This phenomenon allowed the preparation of a novel electrically conductive transparent paper. The high dispersity of the MWCNTs was realized by utilizing a bacterial cellulose membrane as a template to deposit them uniformly, thereby achieving electrically conductive transparent papers with outstanding optical transparency. The light transmittance and electrical conductivity varied according to the concentration of the MWCNT dispersion. Good optimal transparency and electrical properties were obtained with a light transmittance of 70.3% at 550 nm and electrical conductivity of 2.1 × 10?3 S/cm when the electrically conductive transparent paper was fabricated from a 0.02 wt % aqueous MWCNT dispersion. In addition, the electrically conductive transparent papers showed remarkable flexibility without any loss of their initial properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1235–1242, 2008  相似文献   

17.
Composites of nanostructured polyaniline (PANI) conducting polymer in a polyester acrylate (PEA) formulation were made to provide conductive organic coatings. The effect of the presence and amount of PANI on the photocuring performance of the ultraviolet (UV)‐curable acrylate system has been investigated employing real‐time Fourier transform infrared spectroscopy as the main technique. Longer initial retardation of the radical polymerization and lower rates of cross‐linking reactions were observed for dispersions containing PANI of higher than 3wt.%. The PEA/PANI samples were more affected than the neat PEA resin by the changes in UV light intensity and oxygen accessibility during UV curing. Samples with higher PANI content, of up to 10wt.%, were tested and could be partially cured even at UV light intensities as low as 2 mW cm?2 when the oxygen replenishment into the system was inhibited. Thermal analysis revealed that the presence of PANI did not induce any significant change in Tg of the cured system, meaning that early decrease in mobility and vitrification is not the reason for lower ultimate conversion of the dispersions with higher PANI content compared with the neat PEA resin. Curing under strong UV lamps, of 1.5 W cm?2 intensity, made it possible to reach high degrees of conversion on films with similar mechanical properties independent of the PANI content. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Salt‐containing membranes based on polymethacrylates having poly(ethylene carbonate‐co‐ethylene oxide) side chains, as well as their blends with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), have been studied. Self‐supportive ion conductive membranes were prepared by casting films of methacrylate functional poly(ethylene carbonate‐co‐ethylene oxide) macromonomers containing lithium bis(trifluorosulfonyl)imide (LiTFSI) salt, followed by irradiation with UV‐light to polymerize the methacrylate units in situ. Homogenous electrolyte membranes based on the polymerized macromonomers showed a conductivity of 6.3 × 10?6 S cm?1 at 20 °C. The preparation of polymer blends, by the addition of PVDF‐HFP to the electrolytes, was found to greatly improve the mechanical properties. However, the addition led to an increase of the glass transition temperature (Tg) of the ion conductive phase by ~5 °C. The conductivity of the blend membranes was thus lower in relation to the corresponding homogeneous polymer electrolytes, and 2.5 × 10?6 S cm?1 was recorded for a membrane containing 10 wt % PVDF‐HFP at 20 °C. Increasing the salt concentration in the blend membranes was found to increase the Tg of the ion conductive component and decrease the propensity for the crystallization of the PVDF‐HFP component. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 79–90, 2007  相似文献   

19.
This article describes electrically conductive polymer blends containing polyaniline‐dodecyl benzene sulfonic acid (PANI‐DBSA) dispersed in a polystyrene (PS) matrix or in crosslinked polystyrene (XPS). Melt blending of previously mixed, coagulated, and dried aqueous dispersions of PANI‐DBSA and PS latices lead to high conductivities at extremely low PANI‐DBSA concentrations (∼0.5 wt % PANI‐DBSA). In these blends, the very small size of the PANI‐DBSA particles and the surface properties (with surfactants used) of both the PANI and polymer particles play a major role in the PANI‐DBSA particle structuring process. The PANI‐DBSA behavior is characteristic of a unique colloidal polymeric filler with an extremely high surface area and a strong interaction with the matrix, evidenced by a significantly higher glass‐transition temperature of the matrix. The effect of the shear level on the conductivity and morphology of the PS/PANI‐DBSA blends was studied by the production of capillary rheometer filaments at various shear rates. An outstanding result was found for XPS/PANI‐DBSA blends prepared by the blending of aqueous XPS and PANI‐DBSA dispersions. Some of these blends were insulating at low shear levels; however, above a certain shear level, smooth surface filaments were generated, with dramatically increased and stable conductivities. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 611–621, 2001  相似文献   

20.
Small‐angle X‐ray scattering (SAXS) studies of electrically conductive blends based on polyaniline–dodecylbenzenesulfonic acid (PANI–DBSA)/styrene–butadiene–styrene (SBS) triblock copolymer were performed to investigate the influence of the blend preparation procedure on the nanoscopic structure of the blends. The blends were prepared by mechanical mixing (MM) procedure and by in situ polymerization (ISP) of aniline in the presence of SBS. The results indicate that pure PANI–DBSA presents an extended phase consisting of crystalline islands of nanometric size, with a good spatial correlation between them, embedded into an amorphous PANI phase. This feature was not observed in SBS/PANI–DBSA blends prepared by MM or ISP. In MM blends, the PANI phase is constituted by smaller domains, containing poorly spatially correlated crystalline islands, whereas in ISP blends with low or medium amount of PANI, there is no SAXS peak which could be related to a spatial correlation between PANI crystalline islands. The conductivity of the ISP blends is higher when compared to MM blends because of the higher homogeneity at nanometric scale. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3069–3077, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号