首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the critical point‐arboricity graphs. We prove two lower bounds for the number of edges of k‐critical point‐arboricity graphs. A theorem of Kronk is extended by proving that the point‐arboricity of a graph G embedded on a surface S with Euler genus g = 2, 5, 6 or g ≥ 10 is at most with equality holding iff G contains either K2k?1 or K2k?4 + C5 as a subgraph. It is also proved that locally planar graphs have point‐arboricity ≤ 3 and that triangle‐free locally planar‐graphs have point‐arboricity ≤ 2. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 50–61, 2002  相似文献   

2.
A noncomplete graph G is called an (n, k)‐graph if it is n‐connected and GX is not (n − |X| + 1)‐connected for any XV(G) with |X| ≤ k. Mader conjectured that for k ≥ 3 the graph K2k + 2 − (1‐factor) is the unique (2k, k)‐graph. We settle this conjecture for strongly regular graphs, for edge transitive graphs, and for vertex transitive graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 36: 35–51, 2001  相似文献   

3.
One of the basic results in graph colouring is Brooks' theorem [R. L. Brooks, Proc Cambridge Phil Soc 37 ( 4 ) 194–197], which asserts that the chromatic number of every connected graph, that is not a complete graph or an odd cycle, does not exceed its maximum degree. As an extension of this result, Dirac [G. A. Dirac, Proc London Math Soc 7(3) ( 7 ) 161–195] proved that every k‐colour‐critical graph (k ≥ 4) on nk + 2 vertices has at least ½((k ? 1) n + k ? 3) edges. The aim of this paper is to prove a list version of Dirac's result and to extend it to hypergraphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 165–177, 2002; DOI 10.1002/jgt.998  相似文献   

4.
A theorem of Mader states that highly connected subgraphs can be forced in finite graphs by assuming a high minimum degree. We extend this result to infinite graphs. Here, it is necessary to require not only high degree for the vertices but also high vertex‐degree (or multiplicity) for the ends of the graph, that is, a large number of disjoint rays in each end. We give a lower bound on the degree of vertices and the vertex‐degree of the ends which is quadratic in k, the connectedness of the desired subgraph. In fact, this is not far from best possible: we exhibit a family of graphs with a degree of order 2k at the vertices and a vertex‐degree of order k log k at the ends which have no k‐connected subgraphs. Furthermore, if in addition to the high degrees at the vertices, we only require high edge‐degree for the ends (which is defined as the maximum number of edge‐disjoint rays in an end), Mader's theorem does not extend to infinite graphs, not even to locally finite ones. We give a counterexample in this respect. But, assuming a lower bound of at least 2k for the edge‐degree at the ends and the degree at the vertices does suffice to ensure the existence (k + 1)‐edge‐connected subgraphs in arbitrary graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 331–349, 2007  相似文献   

5.
A k‐critical (multi‐) graph G has maximum degree k, chromatic index χ′(G) = k + 1, and χ′(Ge) < k + 1 for each edge e of G. For each k ≥ 3, we construct k‐critical (multi‐) graphs with certain properties to obtain counterexamples to some well‐known conjectures. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 27–36, 1999  相似文献   

6.
Madar conjectured that every k-critical n-connected non-complete graph G has (2k + 2) pairwise disjoint fragments. We show that Mader's conjecture holds if the order of G is greater than (k + 2)n. From this, it implies that two other conjectures on k-critical n-connected graphs posed by Entringer, Slater, and Mader also hold if the cardinality of the graphs is large. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Let k be a fixed integer at least 3. It is proved that every graph of order (2k ? 1 ? 1/k)n + O(1) contains n vertex disjoint induced subgraphs of order k such that these subgraphs are equivalent to each other and they are equivalent to one of four graphs: a clique, an independent set, a star, or the complement of a star. In particular, by substituting 3 for k, it is proved that every graph of order 14n/3 + O(1) contains n vertex disjoint induced subgraphs of order 3 such that they are equivalent to each other. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 159–166, 2007  相似文献   

8.
 A graph is weakly k-homogeneous if whenever two induced subgraphs on k vertices are isomorphic, then some automorphism of this graph sends one induced subgraph to the other. In this note, we characterize weakly k-homogeneous graphs with certain given number of isolated vertices and given number of nontrivial components. As byproduct, all disconnected weakly k-homogeneous graphs are determined for k=2 and k=3. Received: October, 2001 Final version received: October 9, 2002 Acknowledgment. The authors wish to thank the referee for his invaluable remarks.  相似文献   

9.
Erdős has conjectured that every subgraph of the n‐cube Qn having more than (1/2 + o(1))e(Qn) edges will contain a 4‐cycle. In this note we consider ‘layer’ graphs, namely, subgraphs of the cube spanned by the subsets of sizes k − 1, k and k + 1, where we are thinking of the vertices of Qn as being the power set of {1,…, n}. Observe that every 4‐cycle in Qn lies in some layer graph. We investigate the maximum density of 4‐cycle free subgraphs of layer graphs, principally the case k = 2. The questions that arise in this case are equivalent to natural questions in the extremal theory of directed and undirected graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 66–82, 2000  相似文献   

10.
We consider linear programming relaxations for the max cut problem in graphs, based on k-gonal inequalities. We show that the integrality ratio for random dense graphs is asymptotically 1+1/k and for random sparse graphs is at least 1+3/k. There are O(nk)k-gonal inequalities. These results generalize work by Poljak and Tuza, who gave similar results for k=3.  相似文献   

11.
A multigraph is (k,r)‐dense if every k‐set spans at most r edges. What is the maximum number of edges ex?(n,k,r) in a (k,r)‐dense multigraph on n vertices? We determine the maximum possible weight of such graphs for almost all k and r (e.g., for all r>k3) by determining a constant m=m(k,r) and showing that ex?(n,k,r)=m +O(n), thus giving a generalization of Turán's theorem. We find exact answers in many cases, even when negative integer weights are also allowed. In fact, our main result is to determine the maximum weight of (k,r)‐dense n‐vertex multigraphs with arbitrary integer weights with an O(n) error term. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 195–225, 2002  相似文献   

12.
We consider the following problem: Given positive integers k and D, what is the maximum diameter of the graph obtained by deleting k edges from a graph G with diameter D, assuming that the resulting graph is still connected? For undirected graphs G we prove an upper bound of (k + 1)D and a lower bound of (k + 1)D ? k for even D and of (k + 1)D ? 2k + 2 for odd D ? 3. For the special cases of k = 2 and k = 3, we derive the exact bounds of 3D ? 1 and 4D ? 2, respectively. For D = 2 we prove exact bounds of k + 2 and k + 3, for k ? 4 and k = 6, and k = 5 and k ? 7, respectively. For the special case of D = 1 we derive an exact bound on the resulting maximum diameter of order θ(√k). For directed graphs G, the bounds depend strongly on D: for D = 1 and D = 2 we derive exact bounds of θ(√k) and of 2k + 2, respectively, while for D ? 3 the resulting diameter is in general unbounded in terms of k and D. Finally, we prove several related problems NP-complete.  相似文献   

13.
In this article we study the n‐existential closure property of the block intersection graphs of infinite t‐(v, k, λ) designs for which the block size k and the index λ are both finite. We show that such block intersection graphs are 2‐e.c. when 2?t?k ? 1. When λ = 1 and 2?t?k, then a necessary and sufficient condition on n for the block intersection graph to be ne.c. is that n?min{t, ?(k ? 1)/(t ? 1)? + 1}. If λ?2 then we show that the block intersection graph is not ne.c. for any n?min{t + 1, ?k/t? + 1}, and that for 3?n?min{t, ?k/t?} the block intersection graph is potentially but not necessarily ne.c. The cases t = 1 and t = k are also discussed. © 2011 Wiley Periodicals, Inc. J Combin Designs 19: 85–94, 2011  相似文献   

14.
 Let f(2m,k) be the Maximum k-diameter of k-regular k-connected graphs on 2m vertices. In this paper we give an algorithm and prove that we can construct k-regular k-connected graphs on 2m vertices with the maximum k-diameter using it. We also prove some known results about f(2m,k) and verify that we can get some unknown values of f(2m,k) by our algorithm. Received: December 1, 2000 Final version received: March 12, 2002 Acknowledgments. We thank the referee for many useful suggestions.  相似文献   

15.
In this paper we consider those graphs that have maximum degree at least 1/k times their order, where k is a (small) positive integer. A result of Hajnal and Szemerédi concerning equitable vertex-colorings and an adaptation of the standard proof of Vizing's Theorem are used to show that if the maximum degree of a graph G satisfies Δ(G) ≥ |V(G)/k, then X″(G) ≤ Δ(G) + 2k + 1. This upper bound is an improvement on the currently available upper bounds for dense graphs having large order.  相似文献   

16.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph is called 2‐degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2‐degenerate graphs properly contains seriesparallel graphs, outerplanar graphs, non ? regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G)?Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. We prove the conjecture for 2‐degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2‐degenerate graph with maximum degree Δ, then a′(G)?Δ + 1. © 2010 Wiley Periodicals, Inc. J Graph Theory 69: 1–27, 2012  相似文献   

17.
Let G be a connected k–regular bipartite graph with bipartition V(G) = XY and adjacency matrix A. We say G is det‐extremal if per (A) = |det(A)|. Det–extremal k–regular bipartite graphs exist only for k = 2 or 3. McCuaig has characterized the det‐extremal 3‐connected cubic bipartite graphs. We extend McCuaig's result by determining the structure of det‐extremal cubic bipartite graphs of connectivity two. We use our results to determine which numbers can occur as orders of det‐extremal connected cubic bipartite graphs, thus solving a problem due to H. Gropp. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 50–64, 2003  相似文献   

18.
We solve a problem proposed by Jacobson, Kézdy, and Lehel [4] concerning the existence of forbidden induced subgraph characterizations of line graphs of linear k-uniform hypergraphs with sufficiently large minimal edge-degree. Actually, we prove that for each k3 there is a finite set Z(k) of graphs such that each graph G with minimum edge-degree at least 2k2–3k+1 is the line graph of a linear k-uniform hypergraph if and only if G is a Z(k)-free graph.Acknowledgments. We thank the anonymous referees, whose suggestions helped to improve the presentation of the paper.Winter 2002/2003 DIMACS Award is gratefully acknowledged2000 Mathematics Subject Classification: 05C65 (05C75, 05C85)  相似文献   

19.
?iráň constructed infinite families of k‐crossing‐critical graphs for every k?3 and Kochol constructed such families of simple graphs for every k?2. Richter and Thomassen argued that, for any given k?1 and r?6, there are only finitely many simple k‐crossing‐critical graphs with minimum degree r. Salazar observed that the same argument implies such a conclusion for simple k‐crossing‐critical graphs of prescribed average degree r>6. He established the existence of infinite families of simple k‐crossing‐critical graphs with any prescribed rational average degree r∈[4, 6) for infinitely many k and asked about their existence for r∈(3, 4). The question was partially settled by Pinontoan and Richter, who answered it positively for $r\in(3\frac{1}{2},4)$. The present contribution uses two new constructions of crossing‐critical simple graphs along with the one developed by Pinontoan and Richter to unify these results and to answer Salazar's question by the following statement: there exist infinite families of simple k‐crossing‐critical graphs with any prescribed average degree r∈(3, 6), for any k greater than some lower bound Nr. Moreover, a universal lower bound NI on k applies for rational numbers in any closed interval I?(3, 6). © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 139–162, 2010  相似文献   

20.
We describe a method of creating an infinite family of crossing‐critical graphs from a single small planar map, the tile, by gluing together many copies of the tile together in a circular fashion. This method yields all known infinite families of k‐crossing‐critical graphs. Furthermore, the method yields new infinite families, which extend from (4,6) to (3.5,6) the interval of rationals r for which there is, for some k, an infinite sequence of k‐crossing‐critical graphs all having average degree r. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 332–341, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号