首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photooxidations of n‐butyraldehyde initiated by Cl atom were carried out at room temperature (298 ± 2K) and 1 atm pressure. The rate coefficient for the reactions of Cl atom with n‐butyraldehyde was determined as k = (2.04 ± 0.36) × 10?10 cm3 molecule?1 s?1 by using relative rate techniques. The photooxidation products of n‐butyraldehyde reaction with Cl atom were also studied by using both gas chromatography‐mass spectrometry (GC‐MS) and gas chromatography techniques. C2H5CHO, CH3CHO, CO and CO2 were the major products observed. In the absence of NO, the observed yields of C2H5CHO, CH3CHO, and CO were 60%, 3%, and 9%, respectively. However, when NO was introduced into the reaction chamber and the initial ratios of [NO]0/[n‐butyraldehyde]0 were between 1 and 8, the yield of C2H5CHO decreased to 33%, whereas that of CH3CHO and CO rose up to 21% and 25%, respectively. On the basis of mechanism data deduced in this study and the fraction molar yields, the approximate branching ratios for Cl atom attack at ? C(O)H, α‐, β‐, and γ‐positions in n‐butyraldehyde could be derived as ?42%, <25%, 21%, and ?12%, respectively. © 2007 Wiley Periodicals, Inc. 39: 168–174, 2007  相似文献   

2.
Rate coefficients and/or mechanistic information are provided for the reaction of Cl‐atoms with a number of unsaturated species, including isoprene, methacrolein ( MACR ), methyl vinyl ketone ( MVK ), 1,3‐butadiene, trans‐2‐butene, and 1‐butene. The following Cl‐atom rate coefficients were obtained at 298 K near 1 atm total pressure: k(isoprene) = (4.3 ± 0.6) × 10?10cm3 molecule?1 s?1 (independent of pressure from 6.2 to 760 Torr); k( MVK ) = (2.2 ± 0.3) × 10?10 cm3 molecule?1 s?1; k( MACR ) = (2.4 ± 0.3) × 10?10 cm3 molecule?1 s?1; k(trans‐2‐butene) = (4.0 ± 0.5) × 10?10 cm3 molecule?1 s?1; k(1‐butene) = (3.0 ± 0.4) × 10?10 cm3 molecule?1 s?1. Products observed in the Cl‐atom‐initiated oxidation of the unsaturated species at 298 K in 1 atm air are as follows (with % molar yields in parentheses): CH2O (9.5 ± 1.0%), HCOCl (5.1 ± 0.7%), and 1‐chloro‐3‐methyl‐3‐buten‐2‐one (CMBO, not quantified) from isoprene; chloroacetaldehyde (75 ± 8%), CO2 (58 ± 5%), CH2O (47 ± 7%), CH3OH (8%), HCOCl (7 ± 1%), and peracetic acid (6%) from MVK ; CO (52 ± 4%), chloroacetone (42 ± 5%), CO2 (23 ± 2%), CH2O (18 ± 2%), and HCOCl (5%) from MACR ; CH2O (7 ± 1%), HCOCl (3%), acrolein (≈3%), and 4‐chlorocrotonaldehyde (CCA, not quantified) from 1,3‐butadiene; CH3CHO (22 ± 3%), CO2 (13 ± 2%), 3‐chloro‐2‐butanone (13 ± 4%), CH2O (7.6 ± 1.1%), and CH3OH (1.8 ± 0.6%) from trans‐2‐butene; and chloroacetaldehyde (20 ± 3%), CH2O (7 ± 1%), CO2 (4 ± 1%), and HCOCl (4 ± 1%) from 1‐butene. Product yields from both trans‐2‐butene and 1‐butene were found to be O2‐dependent. In the case of trans‐2‐butene, the observed O2‐dependence is the result of a competition between unimolecular decomposition of the CH3CH(Cl)? CH(O?)? CH3 radical and its reaction with O2, with kdecomp/kO2 = (1.6 ± 0.4) × 1019 molecule cm?3. The activation energy for decomposition is estimated at 11.5 ± 1.5 kcal mol?1. The variation of the product yields with O2 in the case of 1‐butene results from similar competitive reaction pathways for the two β‐chlorobutoxy radicals involved in the oxidation, ClCH2CH(O?)CH2CH3 and ?OCH2CHClCH2CH3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 334–353, 2003  相似文献   

3.
The rate coefficients for the reaction OH + CH3CH2CH2OH → products (k1) and OH + CH3CH(OH)CH3 → products (k2) were measured by the pulsed‐laser photolysis–laser‐induced fluorescence technique between 237 and 376 K. Arrhenius expressions for k1 and k2 are as follows: k1 = (6.2 ± 0.8) × 10?12 exp[?(10 ± 30)/T] cm3 molecule?1 s?1, with k1(298 K) = (5.90 ± 0.56) × 10?12 cm3 molecule?1 s?1, and k2 = (3.2 ± 0.3) × 10?12 exp[(150 ± 20)/T] cm3 molecule?1 s?1, with k2(298) = (5.22 ± 0.46) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are at the 95% confidence level and include estimated systematic errors. The results are compared with those from previous measurements and rate coefficient expressions for atmospheric modeling are recommended. The absorption cross sections for n‐propanol and iso‐propanol at 184.9 nm were measured to be (8.89 ± 0.44) × 10?19 and (1.90 ± 0.10) × 10?18 cm2 molecule?1, respectively. The atmospheric implications of the degradation of n‐propanol and iso‐propanol are discussed. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 10–24, 2010  相似文献   

4.
The rate constants k1 for the reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals were determined by using both absolute and relative rate methods. The absolute rate constants were measured at 250–430 K using the flash photolysis–laser‐induced fluorescence (FP‐LIF) technique and the laser photolysis–laser‐induced fluorescence (LP‐LIF) technique to monitor the OH radical concentration. The relative rate constants were measured at 253–328 K in an 11.5‐dm3 reaction chamber with either CHF2Cl or CH2FCF3 as a reference compound. OH radicals were produced by UV photolysis of an O3–H2O–He mixture at an initial pressure of 200 Torr. Ozone was continuously introduced into the reaction chamber during the UV irradiation. The k1 (298 K) values determined by the absolute method were (1.69 ± 0.07) × 10?15 cm3 molecule?1 s?1 (FP‐LIF method) and (1.72 ± 0.07) × 10?15 cm3 molecule?1 s?1 (LP‐LIF method), whereas the K1 (298 K) values determined by the relative method were (1.87 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CHF2Cl reference) and (2.12 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CH2FCF3 reference). These data are in agreement with each other within the estimated experimental uncertainties. The Arrhenius rate constant determined from the kinetic data was K1 = (4.71 ± 0.94) × 10?13 exp[?(1630 ± 80)/T] cm3 molecule?1 s?1. Using kinetic data for the reaction of tropospheric CH3CCl3 with OH radicals [k1 (272 K) = 6.0 × 10?15 cm3 molecule?1 s?1, tropospheric lifetime of CH3CCl3 = 6.0 years], we estimated the tropospheric lifetime of CF3CF2CF2CF2CF2CHF2 through reaction with OH radicals to be 31 years. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 26–33, 2004  相似文献   

5.
Using the relative kinetic method, rate coefficients have been determined for the gas‐phase reactions of chlorine atoms with propane, n‐butane, and isobutane at total pressure of 100 Torr and the temperature range of 295–469 K. The Cl2 photolysis (λ = 420 nm) was used to generate Cl atoms in the presence of ethane as the reference compound. The experiments have been carried out using GC product analysis and the following rate constant expressions (in cm3 molecule?1 s?1) have been derived: (7.4 ± 0.2) × 10?11 exp [‐(70 ± 11)/ T], Cl + C3H8 → HCl + CH3CH2CH2; (5.1 ± 0.5) × 10?11 exp [(104 ± 32)/ T], Cl + C3H8 → HCl + CH3CHCH3; (7.3 ± 0.2) × 10?11 exp[?(68 ± 10)/ T], Cl + n‐C4H10 → HCl + CH3 CH2CH2CH2; (9.9 ± 2.2) × 10?11 exp[(106 ± 75)/ T], Cl + n‐C4H10 → HCl + CH3CH2CHCH3; (13.0 ± 1.8) × 10?11 exp[?(104 ± 50)/ T], Cl + i‐C4H10 → HCl + CH3CHCH3CH2; (2.9 ± 0.5) × 10?11 exp[(155 ± 58)/ T], Cl + i‐C4H10 → HCl + CH3CCH3CH3 (all error bars are ± 2σ precision). These studies provide a set of reaction rate constants allowing to determine the contribution of competing hydrogen abstractions from primary, secondary, or tertiary carbon atom in alkane molecule. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 651–658, 2002  相似文献   

6.
The kinetics of the gas-phase reactions of allyl chloride and benzyl chloride with the OH radical and O3 were investigated at 298 ± 2 K and atmospheric pressure. Direct measurements of the rate constants for reactions with ozone yielded values of ??(O3 + allyl chloride) = (1.60 ± 0.18) × 10?18 cm3 molecule?1 s?1 and ??(O3 + benzyl chloride) < 6 × 10?20 cm3 molecule?1 s?1. With the use of a relative rate technique and ethane as a scavenger of chlorine atoms produced in the OH radical reactions, rate constants of ??(OH + allyl chloride) = (1.69 ± 0.07) × 10?11 cm3 molecule?1 s?1 and ??(OH + benzyl chloride) = (2.80 ± 0.19) × 10?12 cm3 molecule?1 s?1 were measured. A study of the OH radical reaction with allyl chloride by long pathlength FT-IR absorption spectroscopy indicated that the co-products ClCH2CHO and HCHO account for ca. 44% of the reaction, and along with the other products HOCH2CHO, (ClCH2)2CO, and CH2 ? CHCHO account for 84 ± 16% of the allyl chloride reacting. The data indicate that in one atmosphere of air in the presence of NO the chloroalkoxy radical formed following OH radical addition to the terminal carbon atom of the double bond decomposes to yield HOCH2CHO and the CH2Cl radical, which becomes a significant source of the Cl atoms involved in secondary reactions. A product study of the OH radical reaction with benzyl chloride identified only benzaldehyde and peroxybenzoyl nitrate in low yields (ca. 8% and ?4%, respectively), with the remainder of the products being unidentified.  相似文献   

7.
The rate coefficient for the gas‐phase reaction of chlorine atoms with acetone was determined as a function of temperature (273–363 K) and pressure (0.002–700 Torr) using complementary absolute and relative rate methods. Absolute rate measurements were performed at the low‐pressure regime (~2 mTorr), employing the very low pressure reactor coupled with quadrupole mass spectrometry (VLPR/QMS) technique. The absolute rate coefficient was given by the Arrhenius expression k(T) = (1.68 ± 0.27) × 10?11 exp[?(608 ± 16)/T] cm3 molecule?1 s?1 and k(298 K) = (2.17 ± 0.19) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are the 2σ (95% level of confidence), including estimated systematic uncertainties. The hydrogen abstraction pathway leading to HCl was the predominant pathway, whereas the reaction channel of acetyl chloride formation (CH3C(O)Cl) was determined to be less than 0.1%. In addition, relative rate measurements were performed by employing a static thermostated photochemical reactor coupled with FTIR spectroscopy (TPCR/FTIR) technique. The reactions of Cl atoms with CHF2CH2OH (3) and ClCH2CH2Cl (4) were used as reference reactions with k3(T) = (2.61 ± 0.49) × 10?11 exp[?(662 ± 60)/T] and k4(T) = (4.93 ± 0.96) × 10?11 exp[?(1087 ± 68)/T] cm3 molecule?1 s?1, respectively. The relative rate coefficients were independent of pressure over the range 30–700 Torr, and the temperature dependence was given by the expression k(T) = (3.43 ± 0.75) × 10?11 exp[?(830 ± 68)/T] cm3 molecule?1 s?1 and k(298 K) = (2.18 ± 0.03) × 10?12 cm3 molecule?1 s?1. The quoted errors limits (2σ) are at the 95% level of confidence and do not include systematic uncertainties. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 724–734, 2010  相似文献   

8.
Pulsed laser photolysis, time-resolved laser-induced fluorescence experiments have been carried out on the reactions of CN radicals with CH4, C2H6, C2H4, C3H6, and C2H2. They have yielded rate constants for these five reactions at temperatures between 295 and 700 K. The data for the reactions with methane and ethane have been combined with other recent results and fitted to modified Arrhenius expressions, k(T) = A′(298) (T/298)n exp(?θ/T), yielding: for CH4, A′(298) = 7.0 × 10?13 cm3 molecule?1 s?1, n = 2.3, and θ = ?16 K; and for C2H6, A′(298) = 5.6 × 10?12 cm3 molecule?1 s?1, n = 1.8, and θ = ?500 K. The rate constants for the reactions with C2H4, C3H6, and C2H2 all decrease monotonically with temperature and have been fitted to expressions of the form, k(T) = k(298) (T/298)n with k(298) = 2.5 × 10?10 cm3 molecule?1 s?1, n = ?0.24 for CN + C2H4; k(298) = 3.4 × 10?10 cm3 molecule?1 s?1, n = ?0.19 for CN + C3H6; and k(298) = 2.9 × 10?10 cm3 molecule?1 s?1, n = ?0.53 for CN + C2H2. These reactions almost certainly proceed via addition-elimination yielding an unsaturated cyanide and an H-atom. Our kinetic results for reactions of CN are compared with those for reactions of the same hydrocarbons with other simple free radical species. © John Wiley & Sons, Inc.  相似文献   

9.
The kinetics of the C2H5 + Cl2, n‐C3H7 + Cl2, and n‐C4H9 + Cl2 reactions has been studied at temperatures between 190 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time‐resolved measurements to obtain reaction rate coefficients under pseudo‐first‐order conditions. The bimolecular rate coefficients of all three reactions are independent of the helium bath gas pressure within the experimental range (0.5–5 Torr) and are found to depend on the temperature as follows (ranges are given in parenthesis): k(C2H5 + Cl2) = (1.45 ± 0.04) × 10?11 (T/300 K)?1.73 ± 0.09 cm3 molecule?1 s?1 (190–359 K), k(n‐C3H7 + Cl2) = (1.88 ± 0.06) × 10?11 (T/300 K)?1.57 ± 0.14 cm3 molecule?1 s?1 (204–363 K), and k(n‐C4H9 + Cl2) = (2.21 ± 0.07) × 10?11 (T/300 K)?2.38 ± 0.14 cm3 molecule?1 s?1 (202–359 K), with the uncertainties given as one‐standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±20%. Current results are generally in good agreement with previous experiments. However, one former measurement for the bimolecular rate coefficient of C2H5 + Cl2 reaction, derived at 298 K using the very low pressure reactor method, is significantly lower than obtained in this work and in previous determinations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 614–619, 2007  相似文献   

10.
The rate coefficient, k1, for the gas‐phase reaction OH + CH3CHO (acetaldehyde) → products, was measured over the temperature range 204–373 K using pulsed laser photolytic production of OH coupled with its detection via laser‐induced fluorescence. The CH3CHO concentration was measured using Fourier transform infrared spectroscopy, UV absorption at 184.9 nm and gas flow rates. The room temperature rate coefficient and Arrhenius expression obtained are k1(296 K) = (1.52 ± 0.15) × 10?11 cm3 molecule?1 s?1 and k1(T) = (5.32 ± 0.55) × 10?12 exp[(315 ± 40)/T] cm3 molecule?1 s?1. The rate coefficient for the reaction OH (ν = 1) + CH3CHO, k7(T) (where k7 is the rate coefficient for the overall removal of OH (ν = 1)), was determined over the temperature range 204–296 K and is given by k7(T) = (3.5 ± 1.4) × 10?12 exp[(500 ± 90)/T], where k7(296 K) = (1.9 ± 0.6) × 10?11 cm3 molecule?1 s?1. The quoted uncertainties are 2σ (95% confidence level). The preexponential term and the room temperature rate coefficient include estimated systematic errors. k7 is slightly larger than k1 over the range of temperatures included in this study. The results from this study were found to be in good agreement with previously reported values of k1(T) for temperatures <298 K. An expression for k1(T), suitable for use in atmospheric models, in the NASA/JPL and IUPAC format, was determined by combining the present results with previously reported values and was found to be k1(298 K) = 1.5 × 10?11 cm3 molecule?1 s?1, f(298 K) = 1.1, E/R = 340 K, and Δ E/R (or g) = 20 K over the temperature range relevant to the atmosphere. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 635–646, 2008  相似文献   

11.
The kinetics and products of the homogeneous gas-phase reactions of the OH radical with the chloroethenes were investigated at 298 ± 2 K and atmospheric pressure. Using a relative rate technique and ethane as a scavenger for the chlorine atoms produced in these OH radical reactions, rate constants (in units of 10?12 cm3 molecule?1s?1) of 8.11 ± 0.24, 2.38 ± 0.14, and 1.80 ± 0.03 were obtained for 1,1-dichloroethene, cis-1, 2-dichloroethene and trans-1,2-dichloroethene, respectively. Under these conditions, the major products observed by long pathlength FT-IR absorption spectroscopy were HCHO and HC(O)Cl from vinyl chloride; HC(O)Cl from cis- and trans-1,2-dichloroethene; HCHO and COCl2 from 1,1-dichloroethene; HC(O)Cl and COCl2 from trichloroethene; and COCl2 from tetrachloroethene. In the absence of a Cl atom scavenger, significant yields of the chloroacetyl chlorides, CHxCl3?xC(O)Cl, were observed from 1,1-dichloro-, trichloro- and tetrachloroethene, indicating that these products resulted from reactions involving chlorine atoms. The yields of all of these products are reported and the mechanisms of these gas-phase reactions discussed. In addition, OH radical reaction rate constants were redetermined, in the presence of a Cl atom scavenger, for cis- and trans-1,3-dichloropropene and 3-chloro-2-chloromethyl-1-propene, being (in units of 10?12 cm3 molecule?1 s?1) 8.45 ± 0.41, 14.4 ± 0.8, and 33.5 ± 3.0, respectively.  相似文献   

12.
The rate constant of the reaction Cl + CH3OH (k1) has been measured in 500–950 Torr of N2 over the temperature range 291–475 K. The rate constant determination was carried out using the relative rate technique with C2H6 as the reference compound. Experiments were performed by irradiating mixtures of CH3OH, C2H6, Cl2, and N2 with UV light from a fluorescent lamp whose intensity peaked near 360 nm. The resultant temperature‐dependent rate expression is k1 = 8.6 (±1.3) × 10?11 exp[?167 (±60)/T] cm3 molecule?1 s?1. Error limits represent data scatter (2σ) in the current experiments and do not include error in the reference rate constant. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 113–116, 2010  相似文献   

13.
The reaction mechanisms for oxidation of CH3CCl2 and CCl3CH2 radicals, formed in the atmospheric degradation of CH3CCl3 have been elucidated. The primary oxidation products from these radicals are CH3CClO and CCl3CHO, respectively. Absolute rate constants for the reaction of hydroxyl radicals with CH3CCl3 have been measured in 1 atm of Argon at 359, 376, and 402 K using pulse radiolysis combined with UV kinetic spectroscopy giving ??(OH + CH3CCl3) = (5.4 ± 3) 10?12 exp(?3570 ± 890/RT) cm3 molecule?1 s?1. A value of this rate constant of 1.3 × 10?14 cm3 molecule?1 s?1 at 298 K was calculated using this Arrhenius expression. A relative rate technique was utilized to provide rate data for the OH + CH3 CCl3 reaction as well as the reaction of OH with the primary oxidation products. Values of the relative rate constants at 298 K are: ??(OH + CH3CCl3) = (1.09 ± 0.35) × 10?14, ??(OH + CH3CClO) = (0.91 ± 0.32) × 10?14, ??(OH + CCl3CHO) = (178 ± 31) × 10?14, ??(OH + CCl2O) < 0.1 × 10?14; all in units of cm3 molecule?1 s?1. The effect of chlorine substitution on the reactivity of organic compounds towards OH radicals is discussed.  相似文献   

14.
The kinetics of the gas-phase reactions of the OH radical with (C2H5O)3PO and (CH3O)2P(S)Cl and of the reactions of NO3 radicals and O3 with (CH3O)2P(S)Cl have been studied at room temperature. Using a relative rate technique, the rate constants determined for the reactions of the OH radical with (C2H5O)3PO and (CH3O)2P(S)Cl at 296 ± 2 K and 740 torr total pressure of air were (5.53 ± 0.35) × 10?11 and (5.96 ± 0.38) × 10?11 cm3 molecule?1 s?1, respectively. Upper limits to the rate constants for the NO3 radical and O3 reactions with (CH3O)2P(S)Cl of <3 × 10?14 cm3 molecule?1 s?1 and <2 × 10?19 cm3 molecule?1 s?1, respectively, were obtained. These data are compared and discussed with previous literature data for organophosphorus compounds.  相似文献   

15.
Relative rate coefficients for the reactions of OH with 3‐methyl‐2‐cyclohexen‐1‐one and 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one have been determined at 298 K and atmospheric pressure by the relative rate technique. OH radicals were generated by the photolysis of methyl nitrite in synthetic air mixtures containing ppm levels of nitric oxide together with the test and reference substrates. The concentrations of the test and reference substrates were followed by gas chromatography. Based on the value k(OH + cyclohexene) = (6.77 ± 1.35) × 10?11 cm3 molecule?1 s?1, rate coefficients for k(OH + 3‐methyl‐2‐cyclohexen‐1‐one) = (3.1 ± 1.0) × 10?11 and k(OH + 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one) = (2.4 ± 0.7) × 10?11 cm3 molecule?1 s?1 were determined. To test the system we also measured k(OH + isoprene) = (1.11 ± 0.23) × 10?10 cm3 molecule?1 s?1, relative to the value k(OH + (E)‐2‐butene) = (6.4 ± 1.28) × 10?11 cm3 molecule?1 s?1. The results are discussed in terms of structure–activity relationships, and the reactivities of cyclic ketones formed in the photo‐oxidation of monoterpene are estimated. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 7–11, 2002  相似文献   

16.
The laser photolysis‐laser‐induced fluorescence method was used for measuring the kinetic parameters of the reaction of OH radicals with CF3CH2OCH2CF3 (2,2,2‐trifluoroethyl ether), in the temperature range of 298–365 K. The bimolecular rate coefficient at 298 K, kII(298), was measured to be (1.47 ± 0.03) × 10?13 cm3 molecule?1 s?1, and the temperature dependence of kII was determined to be (4.5 ± 0.8) × 10?12exp [?(1030 ± 60)/T] cm3 molecule?1 s?1. The error quoted is 1σ of the linear regression of the respective plots. The rate coefficient at room temperature is very close to the average of the three previous measurements, whereas the values of Ea/R and the A‐factor are higher than the two previously reported values. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 519–525, 2010  相似文献   

17.
The reaction of atomic chlorine with CH3CH2OD has been examined using a discharge fast flow system coupled to a mass spectrometer combined with the relative rate method (RR/DF/MS). At 298 ± 2 K, the rate constant for the Cl + CH3CH2OD reaction was determined using cyclohexane as a reference and found to be k3 = (1.13 ± 0.21) × 10?10 cm3 molecule?1 s?1. Mass spectral studies of the reaction products resulted in yields greater than 97% for the combined hydrogen abstraction at the α and β sites (3a + 3b) and less than 3% at the hydroxyl site (3c). As a calibration of the apparatus and the RR/DF/MS technique, the rate constant of the Cl + CH3CH2OH reaction was also determined using cyclohexane as the reference, and a value of k2 = (1.05 ± 0.07) × 10?10 cm3 molecule?1 s?1 was obtained at 298 ± 2 K, which was in excellent agreement with the value given in current literature. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 584–590, 2004  相似文献   

18.
The gas phase reaction of the hydroxyl radical with the unsaturated peroxyacyl nitrate CH2 ? C(CH3)C(O)OONO2 (MPAN) has been studied at 298 ± 2 K and atmospheric pressure. The OH-MPAN reaction rate constant relative to that of OH + n-butyl nitrate is 2.08 ± 0.25. This ratio, together with a literature rate constant of 1.74 × 10?12 cm3 molecule?1 s?1 for the OH + n-butyl nitrate reaction at 298 K, yields a rate constant of (3.6 ± 0.4)× 10?12 cm3 molecule?1 s?1 for the OH-MPAN reaction at 298 ± 2 K. Hydroxyacetone and formaldehyde are the major carbonyl products. The yield of hydroxyacetone, 0.59 ± 0.12, is consistent with preferential addition of OH at the unsubstituted carbon atom. Atmospheric persistence and removal processes for MPAN are briefly discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
A relative rate method has been used to determine rate constants for the gas-phase reactions of a series of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs) at 298 ± 2 K and atmospheric pressure of air. Based on a rate constant for the reaction of the Cl atom with CH4 of (1.0 ± 0.2) ? 10?13 cm3 molecule?1 s?1 at 298 K, the following Cl atom reaction rate constants (in units of 10?15 cm3 molecule?1 s?1) were obtained: CH3F, 340 ± 70; CH3CHF2, 240 ± 50; CH2FCl, 110 ± 25; CHFCl2, 21 ± 4; CHCl2CF3, 14 ± 3; CHFClCF3, 2.7 ± 0.6; CH3CFCl2, 2.4 ± 0.5; CHF2Cl, 2.0 ± 0.4; CH2FCF3, 1.6 ± 0.3; CH3CF2Cl, 0.37 ± 0.08; and CHF2CF3, 0.24 ± 0.05. These Cl atom reaction rate constants are compared with literature data and with the corresponding OH radical reaction rate constants. © John Wiley & Sons, Inc.  相似文献   

20.
The relative rate technique has been used to determine the rate constants for the reactions Cl + CH3OCHCl2 → products and Cl + CH3OCH2CH2Cl → products. Experiments were carried out at 298 ± 2 K and atmospheric pressure using nitrogen as the bath gas. The decay rates of the organic species were measured relative to those of 1,2‐dichloroethane, acetone, and ethane. Using rate constants of (1.3 ± 0.2) × 10?12 cm3 molecule?1 s?1, (2.4 ± 0.4) × 10?12 cm3 molecule?1 s?1, and (5.9 ± 0.6) × 10?11 cm3 molecule?1 s?1 for the reactions of Cl atoms with 1,2‐dichloroethane, acetone, and ethane respectively, the following rate coefficients were derived for the reaction of Cl atoms (in units of cm3 molecule?1 s?1) with CH3OCHCl2, k= (1.04 ± 0.30) × 10?12 and CH3OCH2CH2Cl, k= (1.11 ± 0.20) × 10?10. Errors quoted represent two σ, and include the errors due to the uncertainties in the rate constants used to place our relative measurements on an absolute basis. The rate constants obtained are compared with previous literature data and used to estimate the atmospheric lifetimes for the studied ethers. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 420–426, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号