首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A result of G. Chartrand, A. Kaugars, and D. R. Lick [Proc Amer Math Soc 32 (1972), 63–68] says that every finite, k‐connected graph G of minimum degree at least ?3k/2? contains a vertex x such that G?x is still k‐connected. We generalize this result by proving that every finite, k‐connected graph G of minimum degree at least ?3k/2?+m?1 for a positive integer m contains a path P of length m?1 such that G?V(P) is still k‐connected. This has been conjectured in a weaker form by S. Fujita and K. Kawarabayashi [J Combin Theory Ser B 98 (2008), 805–811]. © 2009 Wiley Periodicals, Inc. J Graph Theory 65: 61–69, 2010.  相似文献   

2.
For each fixed k ≥ 0, we give an upper bound for the girth of a graph of order n and size n + k. This bound is likely to be essentially best possible as n → ∞. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 194–200, 2002; DOI 10.1002/jgt.10023  相似文献   

3.
A k‐tree is a chordal graph with no (k + 2)‐clique. An ?‐tree‐partition of a graph G is a vertex partition of G into ‘bags,’ such that contracting each bag to a single vertex gives an ?‐tree (after deleting loops and replacing parallel edges by a single edge). We prove that for all k ≥ ? ≥ 0, every k‐tree has an ?‐tree‐partition in which each bag induces a connected ‐tree. An analogous result is proved for oriented k‐trees. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 167–172, 2006  相似文献   

4.
Dirac proved that a graph G is hamiltonian if the minimum degree , where n is the order of G. Let G be a graph and . The neighborhood of A is for some . For any positive integer k, we show that every (2k ? 1)‐connected graph of order n ≥ 16k3 is hamiltonian if |N(A)| ≥ n/2 for every independent vertex set A of k vertices. The result contains a few known results as special cases. The case of k = 1 is the classic result of Dirac when n is large and the case of k = 2 is a result of Broersma, Van den Heuvel, and Veldman when n is large. For general k, this result improves a result of Chen and Liu. The lower bound 2k ? 1 on connectivity is best possible in general while the lower bound 16k3 for n is conjectured to be unnecessary. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 83–100, 2006  相似文献   

5.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

6.
We show that every graph G on n vertices with minimal degree at least n/k contains a cycle of length at least [n/(k ? 1)]. This verifies a conjecture of Katchalski. When k = 2 our result reduces to the classical theorem of Dirac that asserts that if all degrees are at least 1/2n then G is Hamiltonian.  相似文献   

7.
Our main result is the following theorem. Let k ≥ 2 be an integer, G be a graph of sufficiently large order n, and δ(G) ≥ n/k. Then:
  • (i) G contains a cycle of length t for every even integer t ∈ [4, δ(G) + 1].
  • (ii) If G is nonbipartite then G contains a cycle of length t for every odd integer t ∈ [2k ? 1, δ(G) + 1], unless k ≥ 6 and G belongs to a known exceptional class.
© 2006 Wiley Periodicals, Inc. J Graph Theory 52: 157–170, 2006  相似文献   

8.
Graph G is a (k, p)‐graph if G does not contain a complete graph on k vertices Kk, nor an independent set of order p. Given a (k, p)‐graph G and a (k, q)‐graph H, such that G and H contain an induced subgraph isomorphic to some Kk?1‐free graph M, we construct a (k, p + q ? 1)‐graph on n(G) + n(H) + n(M) vertices. This implies that R (k, p + q ? 1) ≥ R (k, p) + R (k, q) + n(M) ? 1, where R (s, t) is the classical two‐color Ramsey number. By applying this construction, and some its generalizations, we improve on 22 lower bounds for R (s, t), for various specific values of s and t. In particular, we obtain the following new lower bounds: R (4, 15) ≥ 153, R (6, 7) ≥ 111, R (6, 11) ≥ 253, R (7, 12) ≥ 416, and R (8, 13) ≥ 635. Most of the results did not require any use of computer algorithms. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 231–239, 2004  相似文献   

9.
Let ? be a set of connected graphs. An ?‐factor of a graph is its spanning subgraph such that each component is isomorphic to one of the members in ?. Let Pk denote the path of order k. Akiyama and Kano have conjectured that every 3‐connected cubic graph of order divisible by 3 has a {P3}‐factor. Recently, Kaneko gave a necessary and sufficient condition for a graph to have a {P3, P4, P5}‐factor. As a corollary, he proved that every cubic graph has a {P3, P4, P5}‐factor. In this paper, we prove that every 2‐connected cubic graph of order at least six has a {Pkk ≥ , 6}‐factor, and hence has a {P3, P4}‐factor. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 188–193, 2002; DOI 10.1002/jgt.10022  相似文献   

10.
P. Erd?s conjectured in [2] that r‐regular 4‐critical graphs exist for every r ≥ 3 and noted that no such graphs are known for r ≥ 6. This article contains the first example of a 6‐regular 4‐critical graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 286–291, 2002  相似文献   

11.
Given positive integers n and k, let gk(n) denote the maximum number of edges of a graph on n vertices that does not contain a cycle with k chords incident to a vertex on the cycle. Bollobás conjectured as an exercise in [2, p. 398, Problem 13] that there exists a function n(k) such that gk(n) = (k + 1)n ? (k + 1)2 for all nn(k). Using an old result of Bondy [ 3 ], we prove the conjecture, showing that n(k) ≤ 3 k + 3. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 180–182, 2004  相似文献   

12.
It is known that for every integer k ≥ 4, each k‐map graph with n vertices has at most kn ? 2k edges. Previously, it was open whether this bound is tight or not. We show that this bound is tight for k = 4, 5. We also show that this bound is not tight for large enough k (namely, k ≥ 374); more precisely, we show that for every and for every integer , each k‐map graph with n vertices has at most edges. This result implies the first polynomial (indeed linear) time algorithm for coloring a given k‐map graph with less than 2k colors for large enough k. We further show that for every positive multiple k of 6, there are infinitely many integers n such that some k‐map graph with n vertices has at least edges. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 267–290, 2007  相似文献   

13.
A graph is t‐tough if the number of components of G\S is at most |S|/t for every cutset SV (G). A k‐walk in a graph is a spanning closed walk using each vertex at most k times. When k = 1, a 1‐walk is a Hamilton cycle, and a longstanding conjecture by Chvátal is that every sufficiently tough graph has a 1‐walk. When k ≥ 3, Jackson and Wormald used a result of Win to show that every sufficiently tough graph has a k‐walk. We fill in the gap between k = 1 and k ≥ 3 by showing that, when k = 2, every sufficiently tough (specifically, 4‐tough) graph has a 2‐walk. To do this we first provide a new proof for and generalize a result by Win on the existence of a k‐tree, a spanning tree with every vertex of degree at most k. We also provide new examples of tough graphs with no k‐walk for k ≥ 2. © 2000 John Wiley & Sons, Inc. J Graph Theory 33:125–137, 2000  相似文献   

14.
It is proved that a cyclically (k ? 1)(2n ? 1)-edge-connected edge transitive k-regular graph with even order is n-extendable, where k ≥ 3 and k ? 1 ≥ n ≥ ?(k + 1)/2?. The bound of cyclic edge connectivity is sharp when k = 3. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
In this article, we study the existence of a 2‐factor in a K1, n‐free graph. Sumner [J London Math Soc 13 (1976), 351–359] proved that for n?4, an (n?1)‐connected K1, n‐free graph of even order has a 1‐factor. On the other hand, for every pair of integers m and n with m?n?4, there exist infinitely many (n?2)‐connected K1, n‐free graphs of even order and minimum degree at least m which have no 1‐factor. This implies that the connectivity condition of Sumner's result is sharp, and we cannot guarantee the existence of a 1‐factor by imposing a large minimum degree. On the other hand, Ota and Tokuda [J Graph Theory 22 (1996), 59–64] proved that for n?3, every K1, n‐free graph of minimum degree at least 2n?2 has a 2‐factor, regardless of its connectivity. They also gave examples showing that their minimum degree condition is sharp. But all of them have bridges. These suggest that the effects of connectivity, edge‐connectivity and minimum degree to the existence of a 2‐factor in a K1, n‐free graph are more complicated than those to the existence of a 1‐factor. In this article, we clarify these effects by giving sharp minimum degree conditions for a K1, n‐free graph with a given connectivity or edge‐connectivity to have a 2‐factor. Copyright © 2010 Wiley Periodicals, Inc. J Graph Theory 68:77‐89, 2011  相似文献   

16.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

17.
Let k be a fixed integer at least 3. It is proved that every graph of order (2k ? 1 ? 1/k)n + O(1) contains n vertex disjoint induced subgraphs of order k such that these subgraphs are equivalent to each other and they are equivalent to one of four graphs: a clique, an independent set, a star, or the complement of a star. In particular, by substituting 3 for k, it is proved that every graph of order 14n/3 + O(1) contains n vertex disjoint induced subgraphs of order 3 such that they are equivalent to each other. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 159–166, 2007  相似文献   

18.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   

19.
A noncomplete graph G is called an (n, k)‐graph if it is n‐connected and GX is not (n − |X| + 1)‐connected for any XV(G) with |X| ≤ k. Mader conjectured that for k ≥ 3 the graph K2k + 2 − (1‐factor) is the unique (2k, k)‐graph. We settle this conjecture for strongly regular graphs, for edge transitive graphs, and for vertex transitive graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 36: 35–51, 2001  相似文献   

20.
A simple graph G is said to have property Pk if it contains a complete subgraph of order k + 1, and a sequence π is potentially Pk-graphical if it has a realization having property Pk. Let σ (k, n) denote the smallest degree sum such that every n-term graphical sequence π without zero terms and with degree sum σ(π) ≥ σ(k, n) is potentially Pk-graphical. Erdós, Jacobson, and Lehel [Graph Theory, 1991, 439–449] conjectured that σ(k, n) = (k − 1)(2nk) + 2. In this article, we prove that the conjecture is true for k = 4 and n ≥ 10. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 63–72, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号