首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two, functional, cyclic carbonate monomers, 5‐methyl‐5‐methoxycarbonyl‐1,3‐dioxan‐2‐one and 5‐methyl‐5‐ethoxy carbonyl‐1,3‐dioxan‐2‐one, were synthesized starting from 2,2‐bis(hydroxymethyl) propionic acid. The ring‐opening polymerization of the cyclic carbonate monomers in bulk with stannous 2‐ethylhexanoate as a catalyst under different conditions was examined. The results showed that the yield and molecular weight of polycarbonates were significantly influenced by the reaction conditions. The polycarbonates obtained were characterized by IR, 1H NMR, and differential scanning calorimetry. Their molecular weight was measured by gel permeation chromatography. The in vitro biodegradation and controlled drug‐release properties of the polycarbonates were also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 4001–4006, 2003  相似文献   

2.
3.
A novel star‐shaped poly(p‐dioxanone) was synthesized by the ring‐opening polymerization of p‐dioxanone initiated by pentaerythritol with stannous octoate as a catalyst in bulk. The effect of the molar ratio of the monomer to the initiator on the polymerization was studied. The polymers were characterized with 1H NMR and 13C NMR spectroscopy. The thermal properties of the polymers were investigated with differential scanning calorimetry and thermogravimetric analysis. The novel star‐shaped poly(p‐dioxanone) has a potential use in biomedical materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1245–1251, 2006  相似文献   

4.
Two novel aluminum metal complexes ( 2 and 3 ) bearing salen ligands were in situ prepared from trimethyl aluminum (AlMe3), methanol, and (R,R)‐N,N′‐bis(salicylidene)‐1,2‐diaminocyclohexane with original synthetic strategies, and a preliminarily resoluted (R,R)‐1,2‐diaminocyclohexane was applied as a synthetic precursor. By means of Fourier transform infrared spectrometry, NMR spectrometry, mass spectrometry, and single‐crystal X‐ray diffractometry, 2 and 3 were revealed to be distinct molecular structures with corresponding yields of 85 and 10%, respectively. Further studies via 27Al NMR techniques and single‐crystal X‐ray diffraction indicated that dimeric metal complex 3 appeared in the six‐coordinated state, whereas there was a dynamic equilibrium transition between the five‐ and six‐coordinated states for metal complex 2 in a CDCl3 solution. The more stable dimeric metal complex ( 3 ) exhibited two inequivalent aluminum metal centers coordinated to nitrogen atoms attributed to two different salen ligands, and this was different from the reported salen aluminum complex structures. Furthermore, 2 and 3 were employed as candidate catalysts for the ring‐opening polymerization (ROP) of some important biodegradable aliphatic polyesters and polycarbonates, including poly(?‐caprolactone) (PCL), poly(δ‐valerolactone), poly(trimethylene carbonate), and poly(2,2‐dimethyl trimethylene carbonate). The synthetic results indicated that both metal complexes efficiently catalyzed ROP at 100 °C in an anisole solution, and 3 showed much better controlled characteristics of ROP than 2 . Very narrow molecular weight distributions close to 1.21 for PCL were detected with 3 as the ROP catalyst. In addition, a catalytic mechanism study confirmed that ROP catalyzed by these metal complexes was in good agreement with the commonly accepted coordination polymerization reported for aluminum triiso [Al(OiPr)3] and stannous octanoate [Sn(Oct)2]. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 373–384, 2005  相似文献   

5.
Novel biodegradable poly(ester anhydride) block copolymers based on ε‐caprolactone (ε‐CL) and adipic anhydride (AA) were prepared by sequential polymerization. ε‐CL was first initiated by potassium poly(ethylene glycol)ate and polymerized into active chains (PCL‐O?K+), which were then used to initiate the ring‐opening polymerization of AA. The effects of the AA feed ratio, solvent polarity, monomer concentration, and temperature on sequential polymerization were investigated. The copolymers, obtained under different conditions, were characterized by Fourier transform infrared, 1H NMR, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). The GPC results showed that the weight‐average molecular weights of the block copolymers were approximately 6.0 × 104. The DSC results indicated the immiscibility of the two components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1511–1520, 2003  相似文献   

6.
Poly(5-benzyloxy-trimethylene carbonate) (PBTMC), a new functional polycarbonate was synthesized by enzymatic ring-opening polymerization in bulk at 150°C using Porcine pancreas lipase (PPL) or Candida rugosa lipase (CL) as catalyst. Influences of different polymerization conditions such as the source of enzyme, enzyme concentration and polymerization time on the molecular weight and yield were studied. The results showed that PPL exhibited higher activity than CL. Both higher molecular weight(Mn, 18953) and yield(98%) could be obtained by the use of PPL as catalyst. 1H NMR spectrum showed no decarboxylation occurrence during the ring-opening polymerization.  相似文献   

7.
8.
A series of tri‐components copolymers with different molar ratios were synthesized via bulk ring‐opening copolymerization of trimethylene carbonate (TMC), L ‐lactide (LLA), and ε‐caprolactone (ε‐CL), using stannous octoate as catalyst. The sequence structure of the tercopolymer chain was characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and gel permeation chromatography (GPC). The results showed that although block sequence of the corresponding monomers still existed in the tercopolymer chain, the random tercopolymers were ultimately obtained due to the transesterification during polymerization. For the samples TP1 and TP2, longer sequence of LLA existed in the molecular chains. The thermal properties of tercopolymers were investigated by differential scanning calorimetry (DSC) and the mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the properties of these copolymers could be adjusted by changing the compositions of the copolymers. The resulting tercopolymers are expected to have potential uses as nerve regeneration and other biomedicine materials. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A plethora of magnesium compounds containing imino(phenoxide) (1–4) and bis(imino)phenoxide (5–10) ligand backbone have been synthesized via the reaction of diethyl magnesium with two equivalent of the corresponding ligand. These compounds were completely characterized by different spectroscopic techniques and elemental analyses. The monomeric nature of the magnesium complexes 3 , 5 , 6 , 9 , and 10 were further confirmed by single crystal X‐ray diffraction studies. The magnesium centers posses distorted trigonal bipyramidal geometry. The controlled hydrolysis compound Mg7O8 (C22H28NO2)6 ( 11 ) was adequately characterized using 1H, 13C NMR, ESI‐MS, and the biscubane structure was further confirmed by single crystal X‐ray diffraction studies. The Mg7O8 core is deeply embedded with the ligand periphery. These compounds (1–10) were found to be active towards the bulk ring opening polymerization (ROP) of lactides, yielding polymers with high number average molecular weight (Mn) and controlled molecular weight distributions (MWDs). In addition, these compounds have been shown to be highly active toward the copolymerization of carbon dioxide with cyclohexene oxide and styrene oxide. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1474–1491  相似文献   

10.
To fulfill the diverse requirements in surgery and medicine, biomedical polymers have been drawing interests and attentions increasingly since the last decade1. In these fields, aliphatic carbonates have been proved to be a kind of material with excellent…  相似文献   

11.
A series of homo‐ and cocyclic(arylene disulfide) oligomers were synthesized under high dilution conditions by the catalytic oxidation of arylenedithiols with oxygen in the presence of a copper‐amine catalyst in DMAc. The aryl groups contained moieties such as sulfone, ether, and ketone. The free radical ring‐opening polymerization of these cyclic(arylene disulfide) oligomers led to the formation of linear poly(thio arylene)s. The homo‐ and cocyclic(arylene disulfide) oligomers were characterized by gradient high pressure liquid chromatography (HPLC), get permeation chromatography (GPC), 1H‐NMR, and differential scanning calorimetry (DSC) methods. These cocyclic(arylene disulfide) oligomers except those containing sulfone moiety had lower melt flow temperature as low as 140 °C and therefore could readily undergo free radical ring‐opening polymerization under mild conditions. The glass transition temperatures of these cocyclics ranged from 72.3 to 190.0 °C, while the glass transition temperatures of the polydisulfides derived from these cocyclics ranged from 78.4 to 194.5 °C. In this article, a new method of preparing arylene dithiols 4,4′‐oxybis(benzenethiol) and diphenylmethane‐4,4′‐dithiol is reported. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
An amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MBC)], was synthesized in bulk by the ring‐opening polymerization of L ‐lactide with 2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate (MBC) in the presence of poly(ethylene glycol) as a macroinitiator with diethyl zinc as a catalyst. The subsequent catalytic hydrogenation of PEG‐b‐P(LA‐co‐MBC) with palladium hydroxide on activated charcoal (20%) as a catalyst was carried out to obtain the corresponding linear copolymer poly(ethyleneglycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylenecarbonate) [PEG‐b‐P(LA‐co‐MCC)] with pendant carboxyl groups. DSC analysis indicated that the glass‐transition temperature (Tg) of PEG‐b‐P(LA‐co‐MBC) decreased with increasing MBC content in the copolymer, and Tg of PEG‐b‐P(LA‐co‐MCC) was higher than that of the corresponding PEG‐b‐P(LA‐co‐MBC). The in vitro degradation rate of PEG‐b‐P(LA‐co‐MCC) in the presence of proteinase K was faster than that of PEG‐b‐P(LA‐co‐MBC), and the cytotoxicity of PEG‐b‐P(LA‐co‐MCC) to chondrocytes from human fetal arthrosis was lower than that of poly(L ‐lactide). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4771–4780, 2005  相似文献   

13.
The ring‐opening copolymerization of methyl ethylene phosphate (MEP, 2‐methoxy‐2‐oxo‐1,3,2‐dioxaphospholane) and ε‐caprolactone (CL) was performed in bulk with lanthanum tris(2,6‐di‐tert‐butyl‐4‐methylphenolate)s as single‐component catalyst, resulting in poly(ester‐phosphoester) random copolymers with high molecular weight and moderate molecular weight distribution. The properties of the copolymers were characterized by differential scanning calorimetry, X‐ray diffractometer, dynamic mechanical analysis, and static water contact angle measurement. The crystallinities of the copolymers were reduced with the increase of MEP molar fraction in the products. Moreover, copolymers with enhanced hydrophilicity and lower glass transition temperature could be obtained with higher MEP content, which may provide potential applications in biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

14.
Novel poly(silylenemethylene)s have been prepared by the ring‐opening polymerization of 1,3‐disilacyclobutanes followed by a protodesilylation reaction with triflic acid. The silicon–aryl bond cleavage could be controlled by using different leaving groups, for instance phenyl‐ and para‐anisyl substituents. The reactions of the triflate derivatives with organomagnesium compounds, LiAlH4, amines or alcohols gave functional substituted poly(silylenemethylene)s. Hydrosilylation reactions or reductive coupling with potassium–graphite led to organosilicon network‐polymers, which may serve as suitable precursors for silicon carbide and Si/C/N‐based materials. The structures of the polymers were identified by nuclear magnetic resonance spectroscopy (29Si, 13C, 1H). Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Ring‐opening polymerization of rac‐ and meso‐lactide initiated by indium bis(phenolate) isopropoxides {1,4‐dithiabutanediylbis(4,6‐di‐tert‐butylphenolate)}(isopropoxy)indium ( 1 ) and {1,4‐dithiabutanediylbis(4,6‐di(2‐phenyl‐2‐propyl)phenolate)}(isopropoxy)indium ( 2 ) is found to follow first‐order kinetics for monomer conversion. Activation parameters ΔH? and ΔS? suggest an ordered transition state. Initiators 1 and 2 polymerize meso‐lactide faster than rac‐lactide. In general, compound 2 with the more bulky cumyl ortho‐substituents in the phenolate moiety shows higher polymerization activity than 1 with tert‐butyl substituents. meso‐Lactide is polymerized to syndiotactic poly(meso‐lactides) in THF, while polymerization of rac‐lactide in THF gives atactic poly(rac‐lactides) with solvent‐dependent preferences for heterotactic (THF) or isotactic (CH2Cl2) sequences. Indium bis(phenolate) compound rac‐(1,2‐cyclohexanedithio‐2,2′‐bis{4,6‐di(2‐phenyl‐2‐propyl)phenolato}(isopropoxy)indium ( 3 ) polymerizes meso‐lactide to give syndiotactic poly(meso‐lactide) with narrow molecular weight distributions and rac‐lactide in THF to give heterotactically enriched poly(rac‐lactides). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4983–4991  相似文献   

16.
Novel metal complexes with a single catalytic site and less transesterification seem to provide alternative efficient synthetic approaches to preparing new biodegradable and biologically responsive materials with well‐defined structures. In this study, we rationally designed a new category of aluminum metal complexes bearing a bulky Salen ligand and diverse steroidal alkoxy moieties to synthesize novel biodegradable aliphatic polyesters end‐capped with steroidal building blocks. At first, three new aluminum metal complexes ( 9 – 11 ) were synthesized with good yields of 80–90%, bearing cholesterol and diosgenin derivatives as functional alkoxy moieties. By means of nuclear magnetic resonance (NMR) spectrometry, matrix‐assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI–FTMS), and Fourier transform infrared spectrometry, the molecular structures of 9 – 11 were characterized. Furthermore, new biodegradable aliphatic polyesters, poly(ε‐caprolactone) and poly(δ‐valerolactone) end‐capped with diverse steroidal moieties, were synthesized through the ring‐opening polymerization of ε‐caprolactone and δ‐valerolactone catalyzed by these new metal complexes under 100 °C in toluene, and they were also characterized by gel permeation chromatography, NMR, MALDI–FTMS, differential scanning calorimetry, and thermogravimetric analysis. Very narrow molecular weight distributions were revealed for these new polymer products, and their thermal crystallization and stability strongly depended on the degree of polymerization of the polyester building blocks and the distinct steroidal moieties. Because of the nature of the steroidal moieties, these biodegradable polymers may pave a path to new possibilities as potential biomaterials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2045–2058, 2006  相似文献   

17.
A series of biodegradable, thermoplastic polyurethane elastomers poly(?‐caprolactone‐co‐lactide(polyurethane [PCLA–PU] were synthesized from a random copolymer of L ‐lactide (LA) and ?‐caprolactone (CL), hexamethylene diisocyanate, and 1,4‐butanediol. The effects of the LA/CL monomer ratio and hard‐segment content on the thermal and mechanical properties of PCLA–PUs were investigated. Gel permeation chromatography, IR, 13C NMR, and X‐ray diffraction were used to confirm the formation and structure of PCLA–PUs. Through differential scanning calorimetry, tensile testing, and tensile‐recovery testing, their thermal and mechanical properties were characterized. Their glass‐transition temperatures were below ?8 °C, and their soft domains became amorphous as the LA content increased. They displayed excellent mechanical properties, such as a tensile strength as high as 38 MPa, a tensile modulus as low as 10 MPa, and an elongation at break of 1300%. Therefore, they could find applications in biomedical fields, such as soft‐tissue engineering and artificial skin. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5505–5512, 2006  相似文献   

18.
Amphiphilic, star‐shaped copolymers were synthesized by the ring‐opening polymerization of trimethylene carbonate initiated with a trifunctional, poly(ethylene glycol)‐based surfactant (polyoxyethylene sorbitan monolaurate) in the absence of any catalysts. The metal‐ and solvent‐free polymerization proceeded at 150 °C and afforded polyoxyethylene sorbitan monolaurate‐block‐poly(trimethylene carbonate) with number‐average molecular weights of 4500–11,900 in excellent yields. The copolymers successfully dispersed in a water/ethyl acetate (10/1 v/v) mixture, and the uniform suspension could contain a hydrophobic pigment and pyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6633–6639, 2006  相似文献   

19.
A one‐step process is reported to directly synthesize blends of poly(trimethylene carbonate) (PTMC) with a modified granular starch. Trimethylene Carbonate (TMC) ring‐opening polymerization is performed in the presence of native starch particles in bulk conditions at 150 °C and the efficiency of metal‐free organic catalysts (TBD and phosphazene superbases P1‐t‐Oct, P2‐t‐bu, and P4‐t‐bu) are investigated to replace the organo‐metallic stannous octanoate initiator. TMC monomer is successively converted into PTMC and the robustness of organic catalysts is highlighted with significant activities at very low concentrations (<100 ppm), where stannous octanoate is inefficient. Reactivity of starch toward TMC ROP is deeply investigated by NMR techniques and a starch‐graft‐PTMC is indirectly evidenced. Starch substitution degree reaches 0.9% indicating that PTMC grafting only occurs at the surface of swollen granular starch. PTMC graft length from the starch surface remained low in the range 2–12 and model ROP reactions highlight the role of TMC hydrolysis on PTMC graft length. Despite low PTMC grafts, a fine dispersion of intact starch particles into the PTMC matrix is evidenced. Consequently, metal‐free organic catalysts at low concentrations are promising candidates for synthesizing blends of PTMC with high loadings of surface‐modified starch (32% by weight) in 2 min within a one‐step process. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 493–503  相似文献   

20.
Microwave‐assisted ring‐opening polymerization (MROP) of trimethylene carbonate in the presence of 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim]BF4) ionic liquid was investigated. In the presence of 5 wt % [bmim]BF4, poly (trimethylene carbonate) (PTMC) with a number‐average molar mass (Mn) of 36,400 g/mol was obtained at 5 W for only 60 min. The Mn of PTMC synthesized in the presence of [bmim]BF4 was much higher than that produced in bulk at the same reaction time. In addition, compared with those produced by conventional heating, the Mn of PTMC and monomer conversion by MROP with or without [bmim]BF4 were both higher. Thermal properties of the resulting PTMC were characterized by differential scanning calorimetry. Under microwave irradiation in the presence of ionic liquid, the polymerization could be carried out efficiently and effectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5857–5863, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号