首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of narrow molecular weight distribution (MWD) polystyrene‐b‐poly[methyl(3,3,3‐trifluoropropyl)siloxane] (PS‐b‐PMTFPS) diblock copolymers were synthesized by the sequential anionic polymerization of styrene and trans‐1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane in tetrahydrofuran (THF) with n‐butyllithium as the initiator. The diblock copolymers had narrow MWDs ranging from 1.06 to 1.20 and number‐average molecular weights ranging from 8.2 × 103 to 37.1 × 103. To investigate the properties of the copolymers, diblock copolymers with different weight fractions of poly[methyl(3,3,3‐trifluoropropyl)siloxane] (15.4–78.8 wt %) were prepared. The compositions of the diblock copolymers were calculated from the characteristic proton integrals of 1H NMR spectra. For the anionic ring‐opening polymerization (ROP) of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3) initiated by polystyryllithium, high monomer concentrations could give high polymer yields and good control of MWDs when THF was used as the polymerization solvent. It was speculated that good control of the block copolymerization under the condition of high monomer concentrations was due to the slowdown of the anionic ROP rate of F3 and the steric hindrance of the polystyrene precursors. There was enough time to terminate the ROP of F3 when the polymer yield was high, and good control of block copolymerization could be achieved thereafter. The thermal properties (differential scanning calorimetry and thermogravimetric analysis) were also investigated for the PS‐b‐PMTFPS diblock copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4431–4438, 2005  相似文献   

2.
The reaction of alkynyldifluoroboranes RC≡CBF2 (R = (CH3)3C, CF3, (CF3)2CF) with organyliodine difluoride R′IF2 bearing electron‐withdrawing polyfluoroorganyl groups R′ = C6F5, (CF3)2CFCF=CF, C4F9, and CF3CH2 leads to the corresponding alkynyl(organyl)iodonium salts [(RC≡C)(R′)I][BF4]. This approach uses a widely applicable method as demonstrated for a representative series of polyfluorinated aryl‐, alkenyl‐, and alkyliodine difluorides. Generally, these syntheses proceed with good yields and deliver pure iodonium salts. The distinct electrophilic nature of their [(RC≡C)(R′)I]+ cations is deduced from multinuclear magnetic resonance data. Within the series of new iodonium salts [CF3C≡C(C4F9)I][BF4] is an intrinsic unstable one and decomposed forming CF3C≡CI and C4F10.  相似文献   

3.
The salts 3‐[(2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium saccharinate, C9H10F4NO+·C7H4NO3S, (1), and 3‐[(2,2,3,3,3‐pentafluoropropoxy)methyl]pyridinium saccharinate, C9H9F5NO+·C7H4NO3S, (2), i.e. saccharinate (or 1,1‐dioxo‐1λ6,2‐benzothiazol‐3‐olate) salts of pyridinium with –CH2OCH2CF2CF2H and –CH2OCH2CF2CF3meta substituents, respectively, were investigated crystallographically in order to compare their fluorine‐related weak interactions in the solid state. Both salts demonstrate a stable synthon formed by the pyridinium cation and the saccharinate anion, in which a seven‐membered ring reveals a double hydrogen‐bonding pattern. The twist between the pyridinium plane and the saccharinate plane in (2) is 21.26 (8)° and that in (1) is 8.03 (6)°. Both salts also show stacks of alternating cation–anion π‐interactions. The layer distances, calculated from the centroid of the saccharinate plane to the neighbouring pyridinium planes, above and below, are 3.406 (2) and 3.517 (2) Å in (1), and 3.409 (3) and 3.458 (3) Å in (2).  相似文献   

4.
As part of a homologous series of novel polyfluorinated bipyridyl (bpy) ligands, the title compound, C16H14F6N2O2, contains the smallest fluorinated group, viz. CF3. The molecule resides on a crystallographic inversion centre at the mid‐point of the pyridine Cipso—Cipso bond. Therefore, the bpy skeleton lies in an anti conformation to avoid repulsion between the two pyridyl N atoms. Weak intramolecular C—H...N and C—H...O interactions are observed, similar to those in related polyfluorinated bpy–metal complexes. A π–π interaction is observed between the bpy rings of adjacent molecules and this is probably a primary driving force in crystallization. Weak intermolecular C—H...N hydrogen bonding is present between one of the CF3CH2– methylene H atoms and a pyridyl N atom related by translation along the [010] direction, in addition to weak benzyl‐type C—H...F interactions to atoms of the terminal CF3 group. It is of note that the O—CH2CF3 bond is almost perpendicular to the bpy plane.  相似文献   

5.
The title compound {2‐[3,5‐bis(trifluoromethyl)‐1H‐pyrazol‐1‐ylmethyl]‐6‐(3,5‐dimethyl‐1H‐pyrazol‐1‐ylmethyl)pyridine}methylpalladium(II) tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, [Pd(C18H18F6N5)][B(C8H3F6)4], crystallizes as discrete cations and anions. The cation possesses a pseudo‐twofold axis about which positional disorder of the tridentate ligand is exhibited. The four substituents on the two pyrazole rings exhibit CH3/CF3 disorder, while all other atoms are ordered. Thus, this disorder can be conveniently described `locally' as compositional, while `globally' for the entire tridentate ligand it is positional. The anion also exhibits typical rotational positional disorder in three of the CF3 groups. All disordered CF3 groups were modeled with idealized C3v geometry.  相似文献   

6.
2‐X‐1, 2‐Difluoroalk‐1‐enylxenon(II) salts were prepared by the reaction of XeF2 with XCF=CFBF2 (X = F, trans‐H, cis‐Cl, trans‐Cl, cis‐CF3, cis‐C2F5) but no organoxenon(II) compounds were obtained when the trans‐isomers of boranes, trans‐XCF=CFBF2 (X = CF3, C4F9, C4H9, Et3Si), were used under similar conditions.  相似文献   

7.
High‐temperature gas‐phase, solvent‐ and catalyst‐free reaction of naphthalene with an excess of RFI reagent (RF?CF3, C2F5, n‐C3F7, and n‐C4F9) was used for the first time to produce a series of highly perfluoroalkylated naphthalene products NAPH(RF)n with n=2–5. Four 95+ % pure 1,3,5,7‐NAPH(RF)4 with RF?CF3, C2F5, n‐C3F7, and n‐C4F9 were isolated using a simple chromatography‐free procedure. These new compounds were fully characterized by 19F and 1H NMR spectroscopy, X‐ray crystallography (for RF?CF3 and C2F5), atmospheric‐pressure chemical ionization mass spectrometry, and cyclic and square‐wave voltammetry. DFT calculations confirm that the proposed synthesis yields the most stable isomers that have not been accessed by alternative preparation techniques.  相似文献   

8.
Crystals of the title compound, C4H8N5+·C2F3O2, are built up of singly protonated 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium cations and trifluoroacetate anions. The CF3 group of the anion is disordered. The oppositely charged ions interact via almost linear N—H...O hydrogen bonds, forming a CF3COO...C4H8N5+ unit. Two units related by an inversion centre interact through a pair of N—H...N hydrogen bonds, forming planar (CF3COO...C4H8N5+...C4H8N5+·CF3COO) aggregates that are linked by a pair of N—H...O hydrogen bonds into chains running along the c axis.  相似文献   

9.
To enable a comparison between a C—H…X hydrogen bond and a halogen bond, the structures of two fluorous‐substituted pyridinium iodide salts have been determined. 4‐[(2,2‐Difluoroethoxy)methyl]pyridinium iodide, C8H10F2NO+·I, (1), has a –CH2OCH2CF2H substituent at the para position of the pyridinium ring and 4‐[(3‐chloro‐2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium iodide, C9H9ClF4NO+·I, (2), has a –CH2OCH2CF2CF2Cl substituent at the para position of the pyridinium ring. In salt (1), the iodide anion is involved in one N—H…I and three C—H…I hydrogen bonds, which, together with C—H…F hydrogen bonds, link the cations and anions into a three‐dimensional network. For salt (2), the iodide anion is involved in one N—H…I hydrogen bond, two C—H…I hydrogen bonds and one C—Cl…I halogen bond; additional C—H…F and C—F…F interactions link the cations and anions into a three‐dimensional arrangement.  相似文献   

10.
Allene is cyclotrimerized under metal‐free conditions with the borane HB(C6F5)2 catalyst to selectively give 1,3,5‐trimethylenecyclohexane ( 3 a ). Three‐fold hydroboration of the 1,3,5‐cyclotrimer with Piers’ borane gives the all‐cis 1,3,5‐CH2B(C6F5)2 substituted cyclohexane product 14 .  相似文献   

11.
A series of well‐defined poly[methyl(3,3,3‐trifluoropropyl)siloxane]‐b‐polystyrene‐b‐poly(tert‐butyl acrylate) (PMTFPS‐b‐PS‐b‐PtBA) triblock copolymers were prepared by a combination of anionic ring‐opening polymerization of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3), and atom transfer radical polymerization (ATRP) of styrene (St) and tert‐butyl acrylate (tBA), using the obtained α‐bromoisobutyryl‐terminal PMTFPS (PMTFPS‐Br) as the macroinitiators. The ATRP of St from PMTFPS‐Br, as well as the ATRP of tBA from the obtained PMTFPS‐b‐PS‐Br macroinitiators, has typical characteristic of controlled/living polymerization. The results of contact angle measurements for the films of PMTFPS‐b‐PS‐b‐PtBA triblock copolymers demonstrate that the compositions have an effect on the wetting behavior of the copolymer films. For the copolymer films with different compositions, there may be different macroscale or nanoscale structures on the outmost layer of the copolymer surfaces. The films with high content of PtBA blocks exhibit almost no ordered microstructures on the outmost layer of the copolymer surfaces, even though they have microphase‐separated structures in bulk. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Phosphorus‐bridged strained [1]ferrocenophanes [Fe{(η‐C5H4)2P(CH2CMe3)}] ( 2 ) and [Fe{(η‐C5H4)2P(CH2SiMe3)}] ( 3 ) with neopentyl and (trimethylsilyl)methyl substituents on phosphorus, respectively, have been synthesized and characterized. Photocontrolled living anionic ring‐opening polymerization (ROP) of the known phosphorus‐bridged [1]ferrocenophane [Fe{(η‐C5H4)2P(CMe3)}] ( 1 ) and the new monomers 2 and 3 , initiated by Na[C5H5] in THF at 5 °C, yielded well‐defined polyferrocenylphosphines (PFPs), [Fe{(η‐C5H4)2PR}]n (R=CMe3 ( 4 ), CH2CMe3 ( 5 ), and CH2SiMe3 ( 6 )), with controlled molecular weights (up to ca. 60×103 Da) and narrow molecular weight distributions. The PFPs 4 – 6 were characterized by multinuclear NMR spectroscopy, DSC, and by GPC analysis of the corresponding poly(ferrocenylphosphine sulfides) obtained by sulfurization of the phosphorus(III) centers. The living nature of the photocontrolled anionic ROP allowed the synthesis of well‐defined all‐organometallic PFP‐b‐PFSF ( 7 a and 7 b ) (PFSF=polyferrocenylmethyl(3,3,3,‐trifluoropropyl)silane) diblock copolymers through sequential monomer addition. TEM studies of the thin films of the diblock copolymer 7 b showed microphase separation to form cylindrical PFSF domains in a PFP matrix.  相似文献   

13.
Trimethylamine‐bis(trifluoromethyl)boranes R(CF3)2B · NMe3 (R = cis/trans‐CF3CF=CF ( 1/2 ), HC≡C ( 3 ), H2C=CH ( 4 ), C2H5 ( 5 ), C6H5CH2 ( 6 ), C6F5 ( 7 ), C6H5 ( 8 )) react with NEt3 × 3 HF depending on the nature of R at 155–200 °C under replacement of the trimethylamine ligand to form the corresponding fluoro‐bis(trifluoromethyl)borates [R(CF3)2BF] ( 1 a/2 a – 8 a ). The structures of 7 , K[C6H5CH2(CF3)2BF] ( K‐6 a ), and K[C6H5(CF3)2BF] ( K‐8 a ) have been investigated by single‐crystal X‐ray diffraction. In 7 the CF3 groups make short repulsive contacts with NMe3 and C6F5 entities – the B–CF3 bonds being unusually long. The B–F bond lengths of K‐6 a and K‐8 a (1.446(3) and 1.452(2) Å, respectively) are long for a fluoroborate.  相似文献   

14.
本文主要描述了由配体2,11-二硫代[3.3]二聚对二甲苯与线性氟代二羧酸银反应制得的三个银配合物的结构。这些配合物的结构因氟代二羧酸银的不同,差别也很大。配体2,11-二硫代[3.3]二聚对二甲苯与氟代丁二酸银反应得到的配合物1是一维链状结构;将银盐换成氟代戊二酸银则获得了三维立体结构的配合物2;若使用氟代己二酸银,则得到了二维多孔的配合物3。在多孔配合物3中,每个孔中容纳了两个客体三甲苯分子,在150℃时这些客体分子可被完全脱除。  相似文献   

15.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

16.
Structures of Bis(trifluoromethyl)halogeno and thiocyanato Mercurates, [Hg(CF3)2X] (X = Br, I, SCN), and a Comparison of the Structural Parameters of the CF3 Groups [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) and [P(CH3)(C6H5)3]2[Hg(CF3)2X]2 (X = Br (2) , I (3) ) are prepared and their crystal structures are determined. [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) crystallizes in the monoclinic space group P21/c with Z = 2, [P(CH3)(C6H5)3]2[Hg(CF3)2Br]2 (2) in the monoclinic space group P21/n with Z = 2 and [P(CH3)(C6H5)3]2[Hg(CF3)2I]2 (3) in the triclinic space group P1¯ with Z = 1. In the solid state the three compounds form dimeric anions with planar Hg2X2 rings. The structural parameters of the Hg(CF3)2 units in the till now known bis(trifluoromethyl)halogeno mercurates are compared. In all compounds one nearly symmetric and one distorted CF3 group exist. The largest differences of the C—F bond lengths is found for [(18‐C‐6)K][Hg(CF3)2I]. This can be regarded as the experimental evidence for the properties of trifluoromethyl mercury compounds to act as excellent difluorocarbene sources in the presence of alkali iodides.  相似文献   

17.
Fluorinated β‐ketonaphthyliminate ligand CF3C(O)CHC[HN(naphthyl)]CH3 ( L1 ) and Pd(II) complexes with dichelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}2Pd ( C1 ), as well as with monochelate fluorinated β‐ketonaphthyliminato ligand, {CF3C(O)CHC[N(naphthyl)]CH3}Pd(CH3)(PPh3) ( C2 ), were synthesized and their solid‐state structures were confirmed using X‐ray crystallographic analysis. The Pd(II) complexes were employed as precursors to catalyze norbornene (NB) homo‐ and copolymerization with ester‐functionalized NB derivative using B(C6F5)3 as a co‐catalyst. High activity up to 2.3 × 105 gpolymer molPd?1 h?1 for the C1 /B(C6F5)3 system and 3.4 × 106 gpolymer molPd?1 h?1 for the C2 /B(C6F5)3 system was exhibited in NB homopolymerization. Moreover, the Pd(II) complexes exhibited a high level of tolerance towards the ester‐functionalized MB monomer. In comparison with the C1 /B(C6F5)3 system, the C2 /B(C6F5)3 system exhibited better catalytic property towards the copolymerization of NB with 5‐norbornene‐2‐carboxylic acid methyl ester (NB‐COOCH3), and soluble vinyl‐addition‐type copolymers were obtained with relatively high molecular weights (3.6 × 104–7.5 × 104 g mol?1) as well as narrow molecular weight distributions (1.49–2.15) depending on the variation of monomer feed ratios. The NB‐COOCH3 insertion ratio in all copolymers could be controlled in the range 2.8–21.0 mol% by tuning a content of 10–50 mol% NB‐COOCH3 in the monomer feed ratios. Copolymerization kinetics were expressed by the NB and NB‐COOCH3 monomer reactivity ratios: rNB‐COOCH3 = 0.18, rNB = 1.28 were determined for the C1 /B(C6F5)3 system and rNB‐COOCH3 = 0.19, rNB = 3.57 for the C2 /B(C6F5)3 system using the Kelen–Tüdõs method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The crystal structures of [(Z)‐2‐methyl­but‐1‐en‐1‐yl]­[4‐(tri­fluoro­methyl)­phenyl]­iodo­nium tri­fluoro­methane­sulfonate, C12H13F3I+·CF3O3S?, (I), (3,5‐di­chloro­phenyl)­[(Z)‐2‐methyl­but‐1‐en‐1‐yl]­iodo­nium tri­fluoro­methane­sulfonate, C11H12­Cl2I+·CF3O3S?, (II), and bis{[3,5‐bis­(tri­fluoro­methyl)­phenyl][(Z)‐2‐methyl­but‐1‐en‐1‐yl]­iodo­nium} bis­(tri­fluoro­methane­sulfonate) di­chloro­methane solvate, 2C13H12F6I+·­2CF3­O3S?·CH2Cl2, (III), are described. Neither simple acyclic β,β‐di­alkyl‐substituted alkenyl­(aryl)­idonium salts nor a series containing electron‐deficient aryl rings have been described prior to this work. Compounds (I)–(III) were found to have distorted square‐planar geometries, with each I atom interacting with two tri­fluoro­methane­sulfonate counter‐ions.  相似文献   

19.
Syntheses and Properties of Bis(perfluoroalkyl)zinc Compounds The conditions for the syntheses of bis(perfluoroalkyl)zinc compounds Zn(Rf)2 · 2 D (Rf = C2F5, n‐C3F7, i‐C3F7, n‐C4F9, n‐C6F13, n‐C7F15, and n‐C8F17; D = CH3CN, tetrahydrofurane, dimethylsulfoxide) are described. Mass spectra, thermal decompositions, 19F‐ and 13C‐NMR spectra are discussed.  相似文献   

20.
Pure gas solubility and permeability of H2, O2, N2, CO2, CH4, C2H6, C3H8, CF4, C2F6, and C3F8 in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) were determined as a function of pressure at 35°C. Permeability coefficients of the perfluorinated penetrants are approximately an order of magnitude lower than those of their hydrocarbon analogs, and lower even than those of the permanent gases. In striking contrast to hydrocarbon penetrants, PTMSP permeability to fluorocarbon penetrants decreases with increasing penetrant size. This unusual size‐sieving behavior in PTMSP is attributed to low perfluorocarbon solubilities in PTMSP coupled with low diffusion coefficients relative to those of their hydrocarbon analogs. In general, perfluorocarbon penetrants are less soluble than their hydrocarbon analogs in PTMSP. The difference in hydrocarbon and perfluorocarbon solubilities in high free volume, hydrocarbon‐rich PTMSP is much smaller than in hydrocarbon liquids and liquidlike polydimethylsiloxane. The low solubility of perfluorocarbon penetrants is ascribed to the large size of the fluorocarbons, which inhibits their dissolution into the densified regions of the polymer matrix and reduces the number of penetrant molecules that can be accommodated in Langmuir sites. From the permeability and sorption data, diffusion coefficients were calculated as a function of penetrant concentration. With the exception of H2 and the C3 analogs, all of the penetrants exhibit a maximum in their concentration‐dependent diffusion coefficients. Resolution of diffusion coefficients into a mobility factor and a thermodynamic factor reveals that it is the interplay between these two terms that causes the maxima. The mobility of the smaller penetrants (H2, O2, N2, CH4, and CO2) decreases monotonically with increasing penetrant concentration, suggesting that the net free volume of the polymer–penetrant mixture decreases as additional penetrant is added to PTMSP. For larger penetrants mobility either: (1) remains constant at low concentrations and then decreases at higher penetrant concentrations (C2H6, CF4, and C2F6); (2) remains constant for all concentrations examined (C3H8); or (3) increases monotonically with increasing penetrant concentration (C3F8). Presumably these results reflect the varying effects of these penetrants on the net free volume of the polymer–penetrant system. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 273–296, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号