首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

2.
This article describes electrically conductive polymer blends containing polyaniline‐dodecyl benzene sulfonic acid (PANI‐DBSA) dispersed in a polystyrene (PS) matrix or in crosslinked polystyrene (XPS). Melt blending of previously mixed, coagulated, and dried aqueous dispersions of PANI‐DBSA and PS latices lead to high conductivities at extremely low PANI‐DBSA concentrations (∼0.5 wt % PANI‐DBSA). In these blends, the very small size of the PANI‐DBSA particles and the surface properties (with surfactants used) of both the PANI and polymer particles play a major role in the PANI‐DBSA particle structuring process. The PANI‐DBSA behavior is characteristic of a unique colloidal polymeric filler with an extremely high surface area and a strong interaction with the matrix, evidenced by a significantly higher glass‐transition temperature of the matrix. The effect of the shear level on the conductivity and morphology of the PS/PANI‐DBSA blends was studied by the production of capillary rheometer filaments at various shear rates. An outstanding result was found for XPS/PANI‐DBSA blends prepared by the blending of aqueous XPS and PANI‐DBSA dispersions. Some of these blends were insulating at low shear levels; however, above a certain shear level, smooth surface filaments were generated, with dramatically increased and stable conductivities. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 611–621, 2001  相似文献   

3.
Aniline was polymerized in the presence of poly(vinyl chloride) (PVC) powders in hydrochloric acid to in situ prepare poly(vinyl chloride)/polyaniline (PVC/PANI) composite particles. UV‐vis spectra and FT‐IR spectra indicate PANI in PVC/PANI composite particles possessed a higher oxidation state with decreased aniline content in reactants. Both conductivity and impact strength of the dodecylbenzenesulfonic acid (DBSA) doped PANI composites (PVC/PANI‐DBSA), which were compression molded from the in situ prepared PVC/PANI particles, increase with the pressing temperature and decrease with the increase of DBSA doped PANI (PANI‐DBSA) loading. An excellent electric conductivity of 5.06 × 10?2 S/cm and impact strength of 0.518 KJ/m2 could be achieved for the in situ synthesized and subsequently compression molded composite. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The solid‐state three‐dimensional ordering of polyaniline–dopant complexes was investigated with four structurally different sulfonic acid dopants. The doped materials were produced in three different ways: polyaniline emeraldine base doped with sulfonic acid (aqueous route), in situ polymerization at the organic–water solvent interface (interfacial route), and in situ polymerization in organic and aqueous solvent mixtures (bilayer route). p‐Toluenesulfonic acid (PTSA), 5‐sulfosalicilic acid (SSA), camphorsulfonic acid (CSA), and dodecylbenzene sulfonic acid (DBSA) were employed as dopants. The conductivity of the aqueous‐route samples showed 10 and 100 times higher conductivity than the interfacial and bilayer routes, respectively. WXRD studies suggested that the crystallinity of the doped samples was dependent on both the structure of the dopants and the polymerization techniques. DBSA increases the polyaniline interplanar distance and produced highly crystalline materials via the aqueous and bilayer routes but failed with the interfacial route because of poor solubility in water. CSA, PTSA, and SSA produced highly crystalline samples by the interfacial route but failed with the aqueous (except for CSA) and bilayer routes. SEM analysis revealed that the doped materials of the interfacial route had excellent continuous morphology and uniform submicrometer‐size particle distributions in comparison with those of the aqueous and bilayer routes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1321–1331, 2005  相似文献   

5.
二磺酸掺杂高热稳定性导电聚苯胺的合成及性能   总被引:2,自引:0,他引:2  
以有机二磺酸作为掺杂剂合成了具有高热稳定性的二磺酸掺杂导电聚苯胺。研究了反应时间、温度、酸/苯胺摩尔比等因素对产率、产物的导电率与分子量的影响。利用微波加热的方法测试有机二磺酸掺杂聚苯胺的热稳定性能,结果表明:有机二磺酸掺杂的导电聚苯胺在微波场中升温速率快,并且具有良好的反复升温性能。  相似文献   

6.
Inkjet printable polyaniline nanoformulations   总被引:1,自引:0,他引:1  
Aqueous polyaniline (PANI) nanodispersions doped with dodecylbenzenesulfonic acid (DBSA) were synthesized and successfully inkjet-printed using a piezoelectric desktop printer. This paper examines the optimization and characterization of the nanoparticulate formulation for optimal film electrochemistry and stability. PANI nanoparticle synthesis was optimized in terms of the ratio of monomer (aniline) to oxidant (ammonium persulphate, APS) and dopant (DBSA). Particle size, UV-vis spectroscopy, electrochemical, and conductivity analyses were performed on all materials. Optimal synthesis conditions were found to be at a molar ratio of 1.0:0.5:1.2 aniline/APS/DBSA. This resulting nanodispersion showed a uniform particle size distribution of approximately 82 nm, and UV-vis analysis indicated a high doping level. These synthetic conditions resulted in the highest conductivity, and the electrochemistry of the resulting films was well-defined and stable. Surface tension analysis and rheological studies demonstrated that the aqueous nanodispersions were suitable for inkjet printing. Successful inkjet printing of these polyaniline nanoparticulate formulations is demonstrated.  相似文献   

7.
Small‐angle X‐ray scattering (SAXS) studies of electrically conductive blends based on polyaniline–dodecylbenzenesulfonic acid (PANI–DBSA)/styrene–butadiene–styrene (SBS) triblock copolymer were performed to investigate the influence of the blend preparation procedure on the nanoscopic structure of the blends. The blends were prepared by mechanical mixing (MM) procedure and by in situ polymerization (ISP) of aniline in the presence of SBS. The results indicate that pure PANI–DBSA presents an extended phase consisting of crystalline islands of nanometric size, with a good spatial correlation between them, embedded into an amorphous PANI phase. This feature was not observed in SBS/PANI–DBSA blends prepared by MM or ISP. In MM blends, the PANI phase is constituted by smaller domains, containing poorly spatially correlated crystalline islands, whereas in ISP blends with low or medium amount of PANI, there is no SAXS peak which could be related to a spatial correlation between PANI crystalline islands. The conductivity of the ISP blends is higher when compared to MM blends because of the higher homogeneity at nanometric scale. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3069–3077, 2007  相似文献   

8.
In this work, the influence of polyaniline (PAni) doped with both camphorsulfonic acid (PAni‐CSA) and dodecylbenzenesulfonic acid (PAni‐DBSA) on polyurethane (PU)/PAni blends was studied by rheological and morphological analyses. The effect of doped polyaniline on the attenuation of incident microwave radiation, in the frequency range from 8.0 to 12.0 GHz, was also investigated. The complex viscosity (η*) of PAni‐DBSA blends is observed to vary more significantly as a function of resting time than PAni‐CSA blends. This behavior is attributed to a better dispersion of PAni particles into the matrix on account of the presence of smaller agglomerates, as observed by optical and electron microscopy. However, this behavior has not been determinant on microwave absorption by the blends, with those that contain PAni‐CSA showing higher attenuation values. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Polyaniline (PANI) doped with different dopants (HCl, dodecyl benzene sulfonic acid, (+)‐Camphor‐10 sulfonic acid, dinonyl naphthalene disulfonic acid) was synthesized by chemical oxidation method. The FTIR studies indicated that the back bone structure of doped PANI was similar. Thermal stability was evaluated in nitrogen atmosphere by dynamic thermogravimetry and PANI‐HCl sample showed minimum weight loss below 400°C. The electrical conductivity of PANI was not affected by the structure of dopants. The microwave absorption studies of several polymers blends containing PANI‐HCl and/or carbon black were also carried out by using wave guide technique.  相似文献   

10.
PI/PANI复合材料的制备与表征   总被引:1,自引:0,他引:1  
以纳米聚苯胺为电磁波的吸收剂,高强度、耐高温的聚酰亚胺为基体设计与制备了高强度、耐热、质轻、薄和吸收宽的新型纳米复合吸波材料.利用微乳液法,以十二烷基苯磺酸(DBSA)为乳化剂和掺杂剂,以过硫酸铵(APS)为氧化剂合成了纳米级聚苯胺(PANI).在此基础上,以PANI的NMP溶液为均苯四甲酸二酐(PMDA)与4,4′-二氨基二苯醚(ODA)的聚合场所,室温下,原位聚合出PANI/聚酰胺酸(PAA)复合材料,再经过亚胺化制备出了PANI/PI复合材料.利用XRD表征了聚合物的结晶形态.红外光谱表征了中间体和聚合物.利用场发射扫描电镜发现PANI/PI复合材料呈现海岛结构,PANI像岛屿一样分散在PI的连续相中,两种材料复合并没有破坏各自的结晶形态.利用数字电桥和自制电极表征了不同含量复合材料的损耗性能,当聚苯胺加到3.4%以上时,复合材料的损耗因数提高了,并且随着频率的增大损耗因数直线增大.  相似文献   

11.
A hybrid approach has been adopted by using a combination of colloidal graphite (CG) as a conducting filler, 5‐lithium sulfoisophthalic (LiSIPA) acid as a dopant, and polyaniline (PANI) as a matrix to prepare LiSIPA doped PANI–CG composites. The thermal stability (~300°C) and electrical conductivity (67.4 S/cm at 17.4% CG content) have been improved significantly as compared to PANI doped with conventional inorganic dopants like HCl or H2SO4 (130–150°C). The maximum shielding effectiveness value was found to be ?39.7 dB. X‐ray diffraction and infrared spectroscopy showed a systematic shifting of the characteristic peaks and bands with increase in the amount of CG, which indicates significant interaction exists between CG and PANI. The UV–Vis spectra showed the characteristic bands of PANI, with a shift to shorter wavelength with increase in the CG content. The interaction mechanism between doped PANI and CG in the resultant composites has been proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The room temperature electrical conductivity of polyaniline (PANI) was found to increase remarkably after it was heated in tetrahydrofuran (THF) with refluxing for a certain period and then doped with methanesulfonic acid (MSA). The enhanced electrical conductivity of PANI was attributed to a partially cross‐linked network generated via the formation of new chemical bonds between adjacent PANI chain segments during thermal treating, which may shorten the inter‐chain distance and facilitate inter‐chain transition of charge carriers in doped PANI. During the refluxing, the moderate dissolving power for PANI as well as a much lower boiling point of THF were considered to have a unique effect on the formation of such partially cross‐linked network in PANI. As a comparison, PANI treated in poor solvents like methanol (or ethanol) and PANI treated in dimethyl formamide (DMF), which is a better solvent than THF but has higher boiling point, did not show an obviously increased electrical conductivity. Study on X‐ray diffraction (XRD) analysis of PANI after refluxing showed that crystallinity decreased gradually with the increase of cross‐linking degree, but the inter‐chain cross‐linking probably occurred first in crystalline region and then in the amorphous region. Electrical conductivity of PANI decreased after it was refluxed with THF for an extended period due to the decreased crystallinity and doping in PANI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
低温合成樟脑磺酸掺杂聚苯胺微管的电化学电容行为   总被引:1,自引:0,他引:1  
在低温条件下合成了长约为2-3 μm, 外径约为300-400 nm 的樟脑磺酸掺杂聚苯胺微管. 扫描电镜(SEM)和透射电镜(TEM)显示, 生成的聚苯胺微管管径受樟脑磺酸浓度的影响, 高浓度的掺杂剂有利于管状聚苯胺的形成. 采用交流阻抗、循环伏安、恒流充放电等测试技术对不同产物的电化学电容行为进行了研究, 结果表明, 苯胺单体与樟脑磺酸的摩尔比为1:1时所得掺杂态聚苯胺电极具有较好的循环稳定性, 单电极比电容达到522 F·g-1.  相似文献   

14.
Polyaniline/magnetite nanocomposites consisting of polyaniline (PANI) nanorods surrounded by magnetite nanoparticles were prepared via an in situ self-assembly process in the presence of PANI nanorods. The synthesis is based on the well-known chemical oxidative polymerization of aniline in an acidic environment, with ammonium persulfate (APS) as the oxidant. An organic acid (dodecylbenzenesulfonic acid, DBSA) was used to replace the conventional strong acidic (1 M HCl) environment. Here, dodecylbenzenesulfonic acid is used not only as dopant, but also as surfactant in our reaction system. So, DBSA can excellently control the morphology and size of PANI nanorods and magnetite particles. Magnetite particles were formed simultaneously during sedimentation, and the formed nanorods were also decorated by the particles. The resulting PANI/magnetite composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). It is found that PANI/magnetite nanorod composites have uniform size, superparamagnetism and a small mass fraction of magnetite, thermal stabilization even at a higher temperature.  相似文献   

15.
Electrically conductive heterogeneous binary polymer blends based on ethylene-propylene-diene-monomer (EPDM) and polyaniline (PAni) were prepared in a Haake Rheocord 90 rheometer, coupled with an internal mixer (counter rotating cam rotors) using different amounts of PAni doped with dodecylbenzenosulfonic acid (DBSA). Blends were crosslinked using two methods: (i) phenolic resin (SP-1045) as crosslinking agent and (ii) electron beam irradiation. The last method avoids the interference of the acid dopant in the crosslinking process and produces blends with higher conductivity.  相似文献   

16.
掺杂率对乳液聚合制备聚苯胺结构性能的影响   总被引:9,自引:0,他引:9  
对乳液聚合的十二烷基苯磺酸(DBSA)掺杂聚苯胺(PAn)进行不同pH值溶液浸泡处理。采用元素分析、红外光谱分析、X射线衍射及热失重分析等手段,研究了不同掺杂率对PAn结构性能以及PAn在普通有机溶剂中的溶解性能和导电性能的影响。结果表明:随DBSA掺杂率的增加,PAn的电导率及其在三氯甲烷中的溶解度增加,带有烷基长链的DBSA使PAn形成以DBSA为间隔的有序层状结构;而且合成的PAn-DBSA热稳定性良好。  相似文献   

17.
Abstract

The chiral conducting polyaniline (PANI) nanocomposites [polyacrylic acid/polyaniline/(?) camphorsulphonic acid (CSA)] were synthesized using enzyme, horseradish peroxidase (HRP) in the aqueous buffer solution at pH 4.3. It appears that the enzyme HRP apart being a biocatalyst, plays an important role during the polymerization, which allows PANI to prefer a specific helical conformation whether the induced chirality in the monomer‐CSA complex is either by (+)CSA or (?)CSA. In this paper, we report, the structural characterization of these nanocomposites by solid‐state 13C cross‐polarization with magic angle spinning (CP/MAS) NMR techniques. The structural features of PANI in the conducting form of nanocomposite (as‐synthesized) are similar to that of enzymatically and chemically synthesized PANI. Preliminary data also suggest that some portion of nanocomposite samples are not completely doped. Dedoping of as‐synthesized PANI nanocomposite with aqueous NH4OH shows the spectral features that of the emeraldine base form. Solid‐state 13C NMR data suggest that it is possible to detach PAA and CSA from PANI in the nanocomposite material.  相似文献   

18.
Conductive elastomeric blends based on ethylene–propylene–5‐ethylidene–2‐norbornene terpolymer (EPDM) and polyaniline doped with 4‐dodecylbenzenesulfonic acid [PAni(DBSA)] were cast from organic solvents. Functionalization of the elastomer was promoted by grafting with maleic anhydride. Vulcanization conditions were optimized with an oscillating disk rheometer. The conductivity, morphology, thermal stability, compatibility, and mechanical behavior of the obtained mixtures were analyzed by in situ direct current conductivity measurements, atomic force microscopy, transmission electron microscopy, wide‐angle X‐ray scattering, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis, stress–strain and hysteresis tests. The vulcanization process was affected by temperature, the PAni content, and maleic anhydride. A reinforcement effect was promoted by the vulcanizing agent. The formation of links between the high‐molar‐mass phases and oligomers of PAni(DBSA) in the elastomeric matrix enhanced the thermal stability and ultimate properties of the blends. By the appropriate control of the polymer blends' composition, it was possible to produce elastomeric materials with conductivities in the range of 10?5–10?4 S · cm?1 and excellent mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1767–1782, 2004  相似文献   

19.
The structure of blends of Nylon 6 with deuterated polyaniline emeraldine base (D-PANI-EB) and fully doped D-PANI salts (D-PANI-ES) formed from camphorsulfonic acid (CSA), methanesulfonic acid (MSA), or dodecyl benzenesulfonic acid (DBSA) were investigated by small-angle neutron (SANS) and X-ray scattering. The blends were formed from hexafluoro-2-propanol solutions and had volume fractions of 0.038, 0.20, and 0.40 for D-PANI/CSA, 0.20 and 0.40 for D-PANI/MSA, 0.24 and 0.44 for D-PANI/DBSA, and 0.07, 0.14, and 0.31 for D-PANI-EB. The SANS results are compared with a number of standard models for two-phase systems. No evidence was found for significant molecular mixing. In some cases the inverse power law model is in reasonable agreement with observations, and in the case of the lowest concentration of D-PANI/CSA there is an indication of mass fractal structure. This was not found at the higher concentrations. The results establish that the blends with the smaller more polar dopants CSA and MSA behave similarly and are unlike either the D-PANI/DBSA blends or those with D-PANI-EB. There is evidence that the simple picture of two pure phases is inadequate for these materials. With the exception of the D-PANI/DBSA blend which has a relatively low scattering contrast, the results indicate that the lower limit of volume fraction for application of SANS is a few percent D-PANI-ES in Nylon 6. X-ray scattering was used to demonstrate the presence of Nylon 6 lamellae and residual peaks attributable to the pure components. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2765–2774, 1997  相似文献   

20.
Polyaniline (PANI) in an emeraldine‐base form, synthesized by chemical oxidation polymerization, was doped with camphor sulfonic acid (CSA). The conducting complex (PANI–CSA) and a matrix, polyamide‐66, polyamide‐11, or polyamide‐1010, were dissolved in a mixed solvent, and the blend solution was dropped onto glass and dried for the preparation of PANI/polyamide composite films. The conductivity of the films ranged from 10?7 to 100 S/cm when the weight fraction of PANI–CSA in the matrices changed from 0.01 to 0.09, and the percolation threshold was about 2 wt %. The morphology of the composite films before and after etching was studied with scanning electron microscopy, and the thermal properties of the composite films were monitored with differential scanning calorimetry. The results indicated that the morphology of the blend systems was in a globular form. The addition of PANI–CSA to the films resulted in a decrease in the melting temperature of the composite films and also affected the crystallinity of the blend systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2531–2538, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号