首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A spin state‐selective Heteronuclear Single‐Quantum Multiple‐Bond Connectivities (HSQMBC‐COSY) experiment is proposed to measure the sign and the magnitude of long‐range proton‐carbon coupling constants (nJ(CH); n > 1) either for protonated or for non‐protonated carbons in small molecules. The simple substitution of the selective 180° 1H pulse in the original selHSQMBC pulse scheme by a hard one allows the simultaneous evolution of both proton‐proton and proton‐carbon coupling constants during the refocusing period and enables a final COSY transfer between coupled protons. The successful implementation of the IPAP principle leads to separate mixed‐phase α/β cross‐peaks from which nJ(CH) values can be easily measured by analyzing their relative frequency displacements in the detected dimension. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Two‐ and three‐bond coupling constants (2JHC and 3JHC) were determined for a series of 12 substituted cinnamic acids using a selective 2D inphase/antiphase (IPAP)‐single quantum multiple bond correlation (HSQMBC) and 1D proton coupled 13C NMR experiments. The coupling constants from two methods were compared and found to give very similar values. The results showed coupling constant values ranging from 1.7 to 9.7 Hz and 1.0 to 9.6 Hz for the IPAP‐HSQMBC and the direct 13C NMR experiments, respectively. The experimental values of the coupling constants were compared with discrete density functional theory (DFT) calculated values and were found to be in good agreement for the 3JHC. However, the DFT method under estimated the 2JHC coupling constants. Knowing the limitations of the measurement and calculation of these multibond coupling constants will add confidence to the assignment of conformation or stereochemical aspects of complex molecules like natural products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Selective refocusing (GSERF or the recent PSYCHEDELIC) experiments were originally designed to determine all proton–proton coupling constants (JHH) for a selected proton resonance. They work for isolated signals on which selective excitation can be successfully applied but, as it happens in other selective experiments, fail for overlapped signals. To circumvent this limitation, a doubly‐selective TOCSY‐GSERF scheme is presented for the measurement of JHH in protons resonating in crowded regions. This new experiment takes advantage of the editing features of an initial TOCSY transfer to uncover hidden resonances that become accessible to perform the subsequent frequency‐selective refocusing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Non‐selective and selective versions of several proton‐detected 1D NMR experiments to be applied to 15N are proposed. Clean, artifact‐free 1D spectra are easily obtained by the effective coherence selection by pulsed‐field gradients and the attainable sensitivity is maximized using modern pulse schemes. Despite the low sensitivity inherent to 15N NMR spectroscopy, the successful application of these experiments is demonstrated for resonance assignments and accurate measurement of both one‐bond and long‐range proton–nitrogen coupling constants on a model tripeptide at natural abundance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
The SELective INverse detection of carbon–proton CORrelation pulse sequence that yields a 1D spectrum of a proton directly bonded to a selected carbon resonance has been converted into a proton and carbon double‐selective variant that provides a 1H spectrum of a selected proton that is long‐range coupled to a specific carbon resonance. The resulting 1D proton multiplet exhibits a pure absorptive in‐phase lineshape for precise measurement of specific long‐range proton–carbon coupling constants in small organic molecules at natural abundance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The measurement of the magnitude and sign of 2J(C,H) couplings offers a reliable way to determine the absolute configuration at a carbon center in a fixed cyclic system. A decrease of the dihedral angle ? in the O—CA—CB—H fragment always leads to a change of the 2J(CA,HB) coupling to more negative values, independent of the type and position of substituents at the two carbon centers. The orientations of the two substituents at C‐3 of the epimeric pair 1 and 2 were determined unambiguously through the measurement of the geminal coupling constants between C‐3 and the hydrogen atoms at C‐2 and C‐4. In particular, 2J(C‐3,H‐2ax) with ?1.5 Hz, ? = 174° in 1 and ?6.6 Hz, ? = 47° in 2 , and 2J(C‐3,H‐4) with +1.5 Hz, ? = 175° in 1 and ?4.7 Hz, ? = 49° in 2 showed the greatest differences between the two epimers. Both couplings therefore allow the determination of the absolute configuration at C‐3. It should be noted, however, that the size of the coupling constants can be different for dihedral angles of nearly identical size, when there are different numbers of electronegative substituents on the two coupling pathways, i.e. no O‐substituent at C‐2, but one axial O‐substituent at C‐4. It becomes clear that it is not sufficient to measure the magnitude of 2J coupling constants only, but that the sign of the geminal coupling is needed to identify the absolute configuration at a chiral center. The coupling of C‐3 with H‐2eq is not useful for the determination of the configuration at C‐3, as the similarity of the dihedral angles ? (O—C‐3—C‐2—H‐2eq) (57° in 1 and 70° in 2 ) leads to identical coupling constants (?6.1 Hz) for both epimers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The structural elucidation by NMR spectroscopy of trisubstituted α-pyridones and the isomeric 2-amino-γ-pyrones as well as their internal and external pyrylium salts is described. The most useful parameter for the differentiation between α-pyridones and isomeric γ-pyrones is the geminal coupling constant 2J(C-6, H-5) which changes from ~2.5 Hz to ~7 Hz whenever the cyclic amide group is replaced by an oxa-function; this applies to both the γ-pyrones and their pyrylium salts. The value of J(C-6, H-5) in the pyridones resembles that of the analogous coupling in N-vinylacetamide, whose sign determination by the selective population inversion (SPI) technique is reported. The 13C chemical shifts of seven pyridones, pyrones and pyrylium salts are reported and their structural correlations are discussed. Quick structural assignments in these classes of compounds may also be performed by evaluating the 14N chemical shifts, which often are accessible by the {14N}—1H-INDOR technique. The proton coupled 13C NMR spectra of two tetrasubstituted pyridines are also reported, and empirical correlations between long range C? H coupling constants and substituent electronegativity are discussed.  相似文献   

8.
Site‐specific 13C isotope labeling is a useful approach that allows for the measurement of homonuclear 13C,13C coupling constants. For three site‐specifically labeled oligosaccharides, it is demonstrated that using the J‐HMBC experiment for measuring heteronuclear long‐range coupling constants is problematical for the carbons adjacent to the spin label. By incorporating either a selective inversion pulse or a constant‐time element in the pulse sequence, the interference from one‐bond 13C,13C scalar couplings is suppressed, allowing the coupling constants of interest to be measured without complications. Experimental spectra are compared with spectra of a nonlabeled compound as well as with simulated spectra. The work extends the use of the J‐HMBC experiments to site‐specifically labeled molecules, thereby increasing the number of coupling constants that can be obtained from a single preparation of a molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The 100 MHz proton and 40.4 MHz 31P NMR spectra of phosphirane (1) have been recorded at ?20 °C and analysed iteratively to yield coupling constants and chemical shifts. The 22.6 MHz 13C spectrum of 1 was recorded at 0 °C and analyzed. The 31P chemical shift of 1 was measured as 40 467 515.97 ± 0.08 Hz relative to TMS as 100 000 000.00 Hz. The geminal P-C-H couplings in 1 are opposite in sign and of different magnitudes (+16.14 and ?2.64 Hz); the P? H coupling (+158.34 Hz) is smaller than that in any other organic phosphine. These observations are discussed and correlated with the geometry of 1. The electronic structure of the strained ring of 1 is discussed in terms of a localized valence bond approach.  相似文献   

10.
The effects of phase modulation due to homonuclear proton–proton coupling constants in HSQMBC‐IPAP and HMBC‐IPAP experiments are experimentally evaluated. We show that accurate values of small proton–carbon coupling constants, nJCH, can be extracted even for phase‐distorted cross‐peaks obtained from a selHSQMBC experiment applied simultaneously on two mutually J‐coupled protons. On the other hand, an assessment of the reliability of nJCH measurement from distorted cross‐peaks obtained in broadband IPAP versions of equivalent HMBC and HSQMBC experiments is also presented. Finally, we show that HMBC‐COSY experiments could be an excellent complement to HMBC for the measurement of small nJCH values. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Improved pulse sequences for measuring long‐range C‐H coupling constants (nJC‐H), named selective COSY‐J‐resolved HMBC‐1 and ?2, have been developed. In the spin systems, such as ‐CHC‐CHA(CH3)‐CHB‐, a methine proton HA splits into a multiplet owing to several vicinal couplings with protons, resulting in attenuation of its cross‐peak intensity. Therefore, the measurements of nJC‐H with HA are generally difficult in the J‐resolved HMBC or selective J‐resolved HMBC spectrum. With the aim of accurate measurements of nJC‐H in such a spin system, we have developed new pulse sequences, which transfer the magnetization of a methyl group to its adjacent methine proton. The proposed pulse sequences successfully enable to enhance the sensitivity of HA cross peak in comparison with the selective J‐resolved HMBC pulse sequence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The proton nuclear magnetic resonance (NMR) spectra of butane‐1,4‐diol, pentane‐1,4‐diol, (S,S)‐hexane‐2,5‐diol, 2,5‐dimethylhexane‐2,5‐diol and cyclohexane‐1,4‐diols (cis and trans) in benzene and some other solvents have been analysed. The conformer distribution and the NMR shifts of these diols in benzene have been computed on the basis of the density functional theory, the solvent being included by means of the integral‐equation‐formalism polarizable continuum model implemented in Gaussian 09. Relative Gibbs energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6‐311+G(d,p) level and NMR shifts by the gauge‐including atomic orbital method with the PBE0/6‐311+G(d,p) geometry and the cc‐pVTZ basis set. Vicinal three‐bond coupling constants for the acyclic diols are calculated from the relative conformer populations, the geometries and generalized Karplus equations developed by Altona's group; these correlate well with the experimental values. The solvent dependence of coupling constants for butane‐1,4‐diol is attributed to conformational change. Coupling constants for the rigid cyclohexane‐1,4‐diols do not change with solvent and are readily explained in terms of their geometries. The NMR shifts of hydrogen‐bonded protons in individual conformers of alkane‐1,n‐diols show a very rough correlation with the OH···OH distances. The computed overall NMR shifts for CH protons in 1,2‐diols, 1,3‐diols and 1,4‐diols are systematically high but correlate very well with the experimental values, with a gradient of 1.07 ± 0.01; those for OH protons correlate less well. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Four‐component relativistic calculations of 77Se–13C spin–spin coupling constants have been performed in the series of selenium heterocycles and their parent open‐chain selenides. It has been found that relativistic effects play an essential role in the selenium–carbon coupling mechanism and could result in a contribution of as much as 15–25% of the total values of the one‐bond selenium–carbon spin‐spin coupling constants. In the overall contribution of the relativistic effects to the total values of 1J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin‐orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second‐order polarization propagator approach (CC2) with the four‐component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of 1J(Se,C). Solvent effects in the values of 1J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2–78.4) are next to negligible decreasing negative 1J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of 77Se–13C spin‐spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1–0.2‐Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Tri-O-methylcellulose was prepared from partially O-methylated cellulose and its chemical shifts (1H and 13C), and proton coupling constants were assigned using the following NMR methods: (1) One-dimensional 1H and 13C spectra of the title compound were used to assign functional groups and to compare with literature data; (2) double quantum filtered proton–proton correlation spectroscopy (1H, 1H DQF-COSY) was used to assign the chemical shifts of the network of 7 protons in the anhydroglucose portion of the repeat unit; (3) the heteronuclear single-quantum coherence (HSQC) spectrum was used to establish connectivities between the bonded protons and carbons; (4) the heteronuclear multiple-bond correlation (HMBC) spectrum was used to connect the hydrogens of the methyl ethers to their respective sugar carbons; (5) the combination of HSQC and HMBC spectra was used to assign the 13C shifts of the methyl ethers; (6) all spectra were used in combination to verify the assigned chemical shifts; (7) first-order proton coupling constants data (JH,H in Hz) were obtained from the resolution-enhanced proton spectra. The NMR spectra of tri-O-methylcellulose and other cellulose ethers do not resemble the spectra of similarly substituted cellobioses. Although the 1H and 13C shifts and coupling constants of 2,3,6-tri-O-methylcellulose closely resemble those of methyl tetra-O-methyl-β-D -glucoside, there are differences with regard to the chemical shifts and the order of appearances of the resonating nuclei of the methyl ether appendages and the proton at position 4 in the pyranose ring. H4 in tri-O-methylcellulose is deshielded by the acetal system comprising the β-1→4 linkage, and it resonates downfield. H4 in the permethylated glucoside is not as deshielded by the equitorial O-methyl group at C4, and it resonates upfield. The order of appearance of the 1H and 13C resonances in the spectra of the tri-O-methylcellulose repeat unit (from upfield to downfield) are H2 < H3 < H5 < H6a < H3a < H2a < pro R H6B < H4 < pro S H6A ≪ H1 and C6a < C3a < C2a < C6 < C5 < C4 < C2 < C3 ≪ C1, respectively. Close examination of the pyranose ring coupling constants of the repeat unit in tri-O-methylcellulose supports the 4C1 arrangement of the glucopyranose ring. Examination of the proton coupling constants about the C5-C6 bond (J5,6A and J5,6B) in the nuclear Overhauser effect difference spectra revealed that the C6 O-methyl group is predominantly in the gauche gauche conformation about the C5-C6 bond for the polymer in solution. © 1999 John Wiley & Sons, Inc.* J Polym Sci A: Polym Chem 37: 4019–4032, 1999  相似文献   

15.
The 1H NMR spectra of methyl 3‐bromo‐2‐methylpropionate (1a) and the corresponding chloro compound (2a) show no long‐range coupling between the methyl and methylene protons. In contrast, in the analogous dihalocompounds, methyl 2,3‐dibromo‐2‐methylpropionate (1b) and methyl 2,3‐dichloro‐2‐methylpropionate (2b), one of the methylene protons exhibits a large 4JHH coupling (0.8 Hz) to the methyl group, but the other proton shows no observable splitting. This can be explained quantitatively by calculations of the conformational preferences in these compounds combined with the known orientation dependence of the 4JHHcouplings. One conformer predominates in the dihalo compounds 1b and 2b, and this is responsible for the 4JHH coupling. In 1a and 2a all three conformers are populated and the 4JHH couplings average to zero. The technique is a potentially general method of unambiguously assigning diastereotopic methylene protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Various [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐thiones were synthesized in high yields by treatment of the corresponding [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐ones with Lawesson's reagent. Detailed NMR spectroscopic studies were undertaken of the title compounds. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H) was achieved by the combined application of various one‐ and two‐dimensional (1D and 2D) NMR spectroscopic techniques. Unequivocal mapping of most 13C,1H spin coupling constants is accomplished by 2D (δ, J) long‐range INEPT spectra with selective excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Two novel oligosaccharides, mono‐ and difructosyllactosucrose {[O‐β‐D ‐fructofuranosyl‐(2 → 1)]n‐β‐D ‐fructofuranosyl‐O‐[β‐D ‐galactopyranosyl‐(1 → 4)]‐α‐D ‐glucopyranoside, n = 1 and 2} were synthesized using 1F‐fructosyltransferase purified form roots of asparagus (Asparagus officinalis L.). Their 1H and 13C NMR spectra were assigned using several NMR techniques. The spectral analysis was started from two anomeric methines of aldose units, galactose and glucose, since they showed separate characteristic signals in their 1H and 13C NMR spectra. After assignments of all the 1H and 13C signals of two units of aldose, they were discriminated as galactose and glucose using proton–proton coupling constants. The HMBC spectrum revealed the galactose residue attached to C‐4 of glucose, fructose residue attached to the C‐1 of glucose, and further fructosyl fructose linkage extended from the glucosyl fructose residues. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Three‐component photoinitiators comprised of an N‐arylphthalimide, a diarylketone, and a tertiary amine were investigated for their initiation efficiency of acrylate polymerization. The use of an electron‐deficient N‐arylphthalimide resulted in a greater acrylate polymerization rate than an electron‐rich N‐arylphthalimide. Triplet energies of each N‐arylphthalimide, determined from their phosphorescence spectra, and the respective rate constants for triplet quenching by the N‐arylphthalimide derivatives (acquired via laser flash photolysis) indicated that an electron–proton transfer from an intermediate radical species to the N‐arylphthalimide (not energy transfer from triplet sensitization) is responsible for generating the initiating radicals under the conditions and species concentrations used for polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4009–4015, 2004  相似文献   

19.
Coupling constants in proton systems provide access to useful structural information. Several methods have been proposed to measure these constants in high-resolution spectra, but many of them are not well suited when the coupling constants are comparable to the spectral linewidth. In such a case the measurement of the apparent splitting, obtained from conventional NMR or from two-dimensional correlation spectroscopy (COSY), can cause a miscalculation of the true coupling constant value. In this work, data processing for extracting small coupling constants is described. Signals are obtained from spin-echo experiments and analysed in the time domain in such a way that couplings are apparently multiplied by n+1, where n is positive. Small coupling constants in 4-methyl-1,3-dioxane were obtained by this method. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
15N NMR data for a series of 12 para‐substituted benzamidoximes and benzamidinium salts were determined in dimethyl sulfoxide. For the amino group of benzamidoximes 1J(N,H) coupling constants were determined using polarization transfer techniques; the other 15N atoms were not detectable owing to fast exchange processes and, thus, standard proton noise decoupled spectra had to be measured. The 15N NMR chemical shifts of the oxime‐type nitrogen atom and the benzamidinium amino group (with two exceptions) correlate with Hammett σ° values (r2>0.95). 15N NMR shift data are a suitable and sensitive means for characterizing far‐ranging electronic substituent effects in these functional groups. Additionally, 13C NMR data in dimethyl sulfoxide solution are given. All spectroscopic data will be used for investigations into the mechanisms of the enzymes involved in the metabolic cycle of oxidation and reduction of benzamidines and benzamidoximes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号