首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic features and photochemistry of TpTiCl3 (1) (Tp = hydrotris(pyrazol-1-yl)borate) and Tp*TiCl3 (2) (Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate) were studied in THF. Reactive decay of the excited states produced either (or ) and metal center Ti(III) radicals via homolytic cleavage of the Tp → Ti (Tp* → Ti) bond. Cleavage of the Tp → Ti and the Tp* → Ti bond as a primary photoprocess is shown to be consistent with LMCT Tp → Ti and Tp* → Ti excitation. TpTiCl2(THF) (3) and Tp*TiCl2(THF) (4) were also prepared by stoichiometric reduction of 1 and 2 with Li3N. The THF ligand in 3 and 4 was replaced by the stable nitroxyl radical TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to provide the new complexes TpTiCl2(TEMPO) (5) and Tp*TiCl2(TEMPO) (6) in which the TEMPO ligand is η1 coordinated to Ti(IV). Photolysis of 5 and 6 generate Ti(III) and the TEMPO radical in the primary photochemical step.  相似文献   

2.
Facile ligand substitutions are observed when the neutral ruthenium cyclopropenyl complex (PPh3)[Ru]-CC(Ph)CHCN (1, [Ru] = Tp(PPh3)Ru) is treated with MeCN and pyrazole yielding the nitrile substituted ruthenium cyclopropenyl complex (MeCN)[Ru]-CC(Ph)CHCN (4a) and the ruthenium metallacyclic pyrazole complex (C3H3NN)[Ru]-CC(Ph)CH2CN (7a), respectively. The reactions of Me3SiN3 with 1, 4a and 7a are investigated. Treatment of 1 with Me3SiN3 affords in high yield the cationic N-coordinated nitrile complex {(PPh3)[Ru]NCCH(Ph)CH2CN}N3 (3). Interestingly, the reaction of 4a with Me3SiN3 in CH2Cl2 in the presence of NH4PF6 results in an insertion of four nitrogen atoms into the Ru-Cα bond to form a diastereomeric mixture of the bright yellow zwitterionic tetrazolate complex (MeCN)[Ru]-N4CCH(Ph)CH2CN (6a) in a 3:2 ratio. The reaction of 7a with Me3SiN3 gives the zwitterionic tetrazolate complex (C3H3NNH)[Ru]-N4CCH(Ph)CH2CN (9a). The two cationic tetrazolate complexes {(C3H3NNH)[Ru]-N4(R)CCH(Ph)CH2CN}+ (12a, R = CH3, 12b, R = C6H5CH2) are prepared by electrophilic addition of organic halides to 9a. All of the complexes are identified by spectroscopic methods as well as elemental analysis. Pathways for the synthesis of these compounds are proposed.  相似文献   

3.
A new family of 14‐electron, four‐coordinate iron(II) complexes of the general formula [TptBu,MeFeX] (TptBu,Me is the sterically hindered hydrotris(3‐tert‐butyl‐5‐methyl‐pyrazolyl) borate ligand and X=Cl ( 1 ), Br, I) were synthesized by salt metathesis of FeX2 with TptBu,MeK. The related fluoride complex was prepared by reaction of 1 with AgBF4. Chloride 1 proved to be a good precursor for ligand substitution reactions, generating a series of four‐coordinate iron(II) complexes with carbon, oxygen, and sulphur ligands. All of these complexes were fully characterized by conventional spectroscopic methods and most were characterized by single‐crystal X‐ray crystallographic analysis. Magnetic measurements for all complexes agreed with a high‐spin (d6, S=2) electronic configuration. The halide series enabled the estimation of the covalent radius of iron in these complexes as 1.24 Å.  相似文献   

4.
Chloro phosphite complexes RuClTpL(PPh3) (1a, 1b) [L = P(OEt)3, PPh(OEt)2] and RuClTp[P(OEt)3]2 (1c) [Tp = hydridotris(pyrazolyl)borate] were prepared by allowing RuClTp(PPh3)2 to react with an excess of phosphite. Treatment of the chloro complexes 1 with NaBH4 in ethanol yielded the hydride RuHTpL(PPh3) (2a, 2b) and RuHTp[P(OEt)3]2 (2c) derivatives. Protonation reaction of 2 with Brønsted acids was studied and led to thermally unstable (above 10 °C) dihydrogen [Ru(η2- H2)TpL(PPh3)]+ (3a, 3b) and [Ru(η2-H2)Tp{P(OEt)3}2]+ (3c) complexes. The presence of the η2-H2 ligand is indicated by short T1 min values and JHD measurements of the partially deuterated derivatives. Aquo [RuTp(H2O)L(PPh3)]BPh4 (4), carbonyl [RuTp(CO)L(PPh3)]BPh4 (5), and nitrile [RuTp(CH3CN)L(PPh3)]BPh4 (6) derivatives [L = P(OEt)3] were prepared by substituting H2 in the η2-H2 derivatives 3. Vinylidene [RuTp{CC(H)R}L(PPh3)]BPh4 (7, 8) (R = Ph, tBu) and allenylidene [RuTp(CCCR1R2)L(PPh3)]BPh4 (9-11) complexes (R1 = R2 = Ph, R1 = Ph R2 = Me) were also prepared by allowing dihydrogen complexes 3 to react with the appropriate HCCR and HCCC(OH)R1R2 alkynes. Deprotonation of vinylidene complexes 7, 8 with NEt3 was studied and led to acetylide Ru(CCR)TpL(PPh3) (12, 13) derivatives. The trichlorostannyl Ru(SnCl3)TpL(PPh3) (14) compound was also prepared by allowing the chloro complex RuClTpL(PPh3) to react with SnCl2 · 2H2O in CH2Cl2.  相似文献   

5.
The new heterometallic complex {μ-1,3,5-[CH(pz)2]3C6H3}[Re(CO)3Br][Pt(p-tolyl)2]2 has been prepared by reaction of 1 equiv. of the dimer [Pt(p-tolyl)2(μ-SEt2)]2 with the monometallic rhenium precursor {1,3,5-[CH(pz)2]3C6H3}Re(CO)3Br, where 1,3,5-[CH(pz)2]3C6H3 is the tritopic, arene-linked bis(pyrazolyl)methane ligand 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene. Similarly, the heterometallic complex {μ-1,3,5-[CH(pz)2]3C6H3}[Re(CO)3Br]2[Pt(p-tolyl)2] has been made by the reaction of the dirhenium compound {μ-1,3,5-[CH(pz)2]3C6H3}[Re(CO)3Br]2 and one-half of an equivalent of [Pt(p-tolyl)2(μ-SEt2)]2. X-ray crystallographic studies of the new compounds reveal significant noncovalent interactions in their molecular and supramolecular structures.  相似文献   

6.
Reaction of [Si(3,5‐Me2pz)4] ( 1 ) with [Cu(MeCN)4][BF4] ( 2 ) gave the mono‐ and dinuclear copper complexes [Cu2(FTp*)2] ( 3 ) and [Cu(FTp*)2] ( 4 ). Both complexes contain the so‐far unprecedented boron‐fluorinated FTp* ligand ([FB(3,5‐Me2pz)3]? with pz=pyrazolyl) originating from 1 , acting as a pyrazolyl transfer reagent, and the [BF4]? counter anion of 2 , serving as the source of the {BF} entity. The solid‐state structures as well as the NMR and EPR spectroscopic characteristics of the complexes were elaborated. Pulsed gradient spin echo (PGSE) experiments revealed that 3 retains (almost entirely) its dimeric structure in benzene, whereas dimer cleavage and formation of acetonitrile adducts, presumably [Cu(FTp*)(MeCN)], is observed in acetonitrile. The short Cu???Cu distance of 269.16 pm in the solid‐state is predicted by DFT calculations to be dictated by dispersion interactions between all atoms in the complex (the Cu?Cu dispersion contribution itself is only very small). As revealed by cyclic voltammetry studies, 3 shows an irreversible (almost quasi‐reversible at higher scan rates) oxidation process centred at Epa=?0.23 V (E01/2=?0.27 V) (vs. Fc/Fc+). Oxidation reactions on a preparative scale with one equivalent of the ferrocenium salt [Fc][BF4] (very slow reaction) or air (fast reaction) furnished blue crystals of the mononuclear copper(II) complex [Cu(FTp*)2] ( 4 ). As expected for a Jahn–Teller‐active system, the coordination sphere around copper(II) is strongly distorted towards a stretched octahedron, in accordance with EPR spectroscopic findings.  相似文献   

7.
Tris(trifluoromethyl)boron complexes have unusual properties and may find applications in many fields of chemistry, biology, and physics. To gain insight into their NMR properties, the isotropic 11B, 13C, and 19F NMR chemical shifts of a series of tris(trifluoromethyl)boron complexes were systematically studied using the gauge‐included atomic orbitals (GIAO) method at the levels of B3LYP/6‐31 + G(d,p)//B3LYP/6‐31G* and B3LYP/6‐311 + G(d,p)//B3LYP/6‐311 + G(d,p). Solvent effects were taken into account by polarizable continuum models (PCM). The calculated results were compared with the experimental values. The reason that the structurally inequivalent fluorine atoms in a specific species give a same chemical shift in experimental measurements is attributed to the fast rotation of CF3 group around the B? C(F3) bond because of the low energy barrier. The calculated 11B, 13C(F3), and 19F chemical shifts are in good agreement with the experimental measurements, while the deviations of calculated 13C(X, X = O, N) chemical shifts are slightly large. For the latter, the average absolute deviations of the results from B3LYP/6‐311 + G(d,p)//B3LYP/6‐311 + G(d,p) are smaller than those from B3LYP/6‐31 + G(d,p)//B3LYP/6‐31G*, and the inclusion of PCM reduces the deviation values. The calculated 19F and 11B chemical shieldings of (CF3)3BCO are greatly dependent on the optimized structures, while the influence of structural parameters on the calculated 13C chemical shieldings is minor. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The new anthracene-based, bitopic bis(pyrazolyl)methane ligand 1,8-bis(4-[bis(1-pyrazolyl)methyl]phenyl)anthracene (1,8-[4-CH(pz)2C6H4]2C14H8) has been prepared by the cobalt-catalyzed reaction between thionyldipyrazole and 1,8-bis(4-formylphenyl)anthracene. The reaction between 1,8-[4-CH(pz)2C6H4]2C14H8 and Re(CO)5Br yielded the dirhenium complex {μ-1,8-[4-CH(pz)2C6H4]2C14H8}[Re(CO)3Br]2. The solid state structure of this complex displays extensive noncovalent interactions, particularly CH-π and π-π interactions.  相似文献   

9.
Treatment of a solid mixture of KBH4 with six equivalents of 3,5-diisopropylpyrazole (iPr2pzH) at 180 °C afforded KTpiPr2(iPr2PzH)3 in 53% yield. KBpiPr2 was synthesized in 56% yield by treatment of a 1:2 M ratio of KBH4 and iPr2PzH in refluxing dimethylacetamide. Treatment of MI2 (M = Ca, Sr, Ba) with two equivalents of KBp or KBpiPr2 in tetrahydrofuran afforded MBp2(THF)2 (M = Ca, 64%, M = Sr, 81%), BaBp2(THF)4 (32%), and M(BpiPr2)2(THF)2 (M = Ca, 63%; M = Sr, 61%, M = Ba, 48%) as colorless crystalline solids upon workup. These complexes were characterized by spectral and analytical techniques and by X-ray crystal structure determinations of all complexes except KBpiPr2. KTpiPr2(iPr2PzH)3 contains one κ3-N,N,N-TpiPr2 ligand and three κ1-iPr2pzH ligands, with overall distorted octahedral geometry about the K ion. The iPr2PzH nitrogen-hydrogen bonds are engaged in intramolecular hydrogen bonding to the 2-nitrogen atoms of the TpiPr2 ligand. The solid state structures of MBp2(THF)2, BaBp2(THF)4, and M(BpiPr2)2(THF)2 contain κ3-N,N,H Bp and BpiPr2 ligands, which form through metal-nitrogen bond formation to the 2-nitrogen atoms of the pyrazolyl fragments and metal-hydrogen bond formation to one boron-bound hydrogen atom per Bp ligand. SrBp2(THF)2has the shortest metal-hydrogen interactions among the series. A combination of preparative sublimations, solid state decomposition temperatures, and thermogravimetric analysis demonstrated that MBp2(THF)2, BaBp2(THF)4, and M(BpiPr2)2(THF)2 undergo solid state decomposition at moderate temperatures.  相似文献   

10.
Reduction of MoO2Cl2(DMF)2 (DMF = dimethylformamide) with PPh3 in mild conditions afforded the dinuclear species Mo2O3Cl4(DMF)4. Related compounds could be prepared by substitution of DMF with stronger bases. While attempting to grow crystals of these compounds new complexes with the syn-[Mo2O4]2+ core were obtained. The molecular structures of Mo2O4Cl2(DMF)4, and Mo2O4Cl2(bipy)2 (bipy = 2,2′-bipyridine) have been established by X-ray diffraction analysis.  相似文献   

11.
The monomeric oxomolybdenum(V) complexes, [MoOLCl2]1a-1d [HL = S-benzyl/methyl 3-(2-pyridyl)methylenedithiocarbazate (1a and1b), or N-methyl-S-benzyl/methyl 3-(2-hydroxy phenyl)methylenedithiocarbazate (1c and1d) are synthesized by the reaction of MoOCl 5 2− with HL ligands. All these complexes show magnetic moment of about 1.7 B.M. The complexes,1a and1b, exhibit rhombicg-tensor anisotropy (like xanthine oxidase) whilst1c and1d show axial spectrum. The above complexes undergo irreversible electrochemical reduction furnishing Mo(IV) species and the potentials are dependent on the S-substituents. Reactions of MoOX 5 (X = Cl or Br) with H2L1 [H2L1 = S-methyl 3-(5-R-2-hydroxyphenyl)methylenedithiocarbazate] (R = H, CH3, Cl, Br) produce complexes of thiolatobridged dimers, [Mo2O2L 2 1 X2], which show sub-normal magnetic moments at room temperature. The metal-centred irreversible oxidation and reduction of these complexes show expected dependence on the R-substituents of the salicyl phenyl ring of the ligands.  相似文献   

12.
Manganese(II) complex catalysts with hydrotris(pyrazolyl)borate ligands have been examined on their catalytic performance in ethylene polymerization and ethylene/1‐hexene copolymerization. The activities of [Mn(L6)(Cl)(NCMe)] ( 1 ) and [Mn(L10)(Cl)] ( 2 ) activated by Al(i‐Bu)3/[Ph3C][B(C6F5)4] for ethylene polymerization go up to 326 and 11 kg mol (cat?1) h?1, respectively, (L6? = hydrotris(3‐phenyl‐5‐methyl‐1‐pyrazolyl)borate anion, L10? = hydrotris(3‐adamantyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In particular, for ethylene/1‐hexene copolymerization, complex 1 gives high‐molecular‐weight poly(ethylene‐co‐1‐hexene)s with the highest Mw of 439,000 in manganese olefin polymerization catalyst systems. Moreover, the 1‐hexene incorporation by complex 1 seems more efficient than that by [Mn(L3)(Cl)] ( 4 ) (L3? = hydrotris(3‐tertiary butyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In this work, we demonstrated that the coordination geometry and coordination number are also important factors for ethylene polymerization reaction as well as steric hindrances and ligand frameworks in our manganese(II) catalysts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5720–5727, 2009  相似文献   

13.
A series of half-sandwich ruthenium(II) complexes containing κ3(N,N,N)-hydridotris(pyrazolyl)borate (κ3(N,N,N)-Tp) and the water-soluble phosphane 1,3,5-triaza-7-phosphaadamantane (PTA) [RuX{κ3(N,N,N)-Tp}(PPh3)2−n(PTA)n] (n = 2, X = Cl (1), n = 1, X = Cl (2), I (3), NCS (4), H (5)) and [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)L][PF6] (L = NCMe (6), PTA (7)) have been synthesized. Complexes containing 1-methyl-3,5-diaza-1-azonia-7-phosphaadamantane(m-PTA) triflate [RuCl{κ3(N,N,N)-Tp}(m-PTA)2][CF3SO3]2 (8) and [RuX{κ3(N,N,N)-Tp}(PPh3)(m-PTA)][CF3SO3] (X = Cl (9), H (10)) have been obtained by treatment, respectively, of complexes 1, 2 and 5 with methyl triflate. Single crystal X-ray diffraction analysis for complexes 1, 2 and 4 have been carried out. DNA binding properties by using a mobility shift assay and antimicrobial activity of selected complexes have been evaluated.  相似文献   

14.
Copper(I) coordination complexes of the anionic fluorinated ligand, hydrotris(3-trifluoromethyl-5-methyl-1-pyrazolyl)borate (L0f), i.e. the copper(I) carbonyl complex, [CuI(L0f)(CO)] (1), the copper(I) triphenylphosphine complex, [CuI(L0f)(PPh3)] (2), the copper(I) acetonitrile complex, [CuI(L0f)(NCMe)] (3), and the corresponding copper(I) triphenylphosphine complex with hydrotris(3,5-diisopropyl-1-pyrazolyl)-borate anion (L1), i.e. [CuI(L1)(PPh3)] (4), were synthesized in order to investigate the influence of the electron-withdrawing groups on the pyrazolyl rings. The structures of complexes 1, 2, and 4 were determined by X-ray crystallography. While X-ray crystallography did not show definitive trends in terms of copper(I) atom geometry, the clear influence of the electronic structure of the pyrazolyl rings is observed by spectroscopic techniques, namely, IR and multinuclear NMR spectroscopy. Finally, the relative stability of the copper(I) complexes is discussed.  相似文献   

15.
Gamma radiation of poly (lactide-co-glycolide) raw polymers and processed microspheres under vacuum and at 77 K results in the formation of a series of free radicals. The resulting powder electron paramagnetic resonance (EPR) spectrum contains a distribution of several different radicals, depending on the annealing temperature, and is therefore difficult to interpret. By utilising the selectivity of the electron nuclear DOuble resonance (ENDOR) and associated ENDOR induced EPR (EIE) techniques, a more direct approach for the deconvolution of the EPR spectrum can be achieved. Using this approach, the radiolytically induced CH3 *CHC(O)R- chain scission radical was identified at 120 K by simulation of the EIE spectrum. At elevated temperatures (250 K), this radical decays considerably and the more stable radicals -O*CHC(O)-, CH3 *C(OR)C(O)- and CH3 *C(OH)C(O)- predominate. This work demonstrates the utility of the EIE approach to supplement and aid the interpretation of powder EPR spectra of radicals in a polymer matrix.  相似文献   

16.
The platinum trimethyl complex of a benzoic acid-functionalized hydrido-tris(pyrazolyl)borate (Tp) ligand [p-(HO2C)C6H4Tp]PtMe34 has been synthesized from the corresponding p-bromo complex [p-BrC6H4Tp]PtMe33. Compound 4 may be readily coupled to biomolecules such as amino acids as exemplified by coupling to l-phenylalanine-tert-butylester to provide [p-(tBuO-Phe-CO)C6H4Tp]PtMe35. Compound 5 has been structurally characterized in the solid state by X-ray diffraction. It constitutes the first example of a tris(pyrazolyl)borate bioconjugate.  相似文献   

17.
The reactions of [Re(CO)5Cl] with the ligands tpy (2,2′:6′,2″-terpyridine), py3N {tris(2-pyridyl)-amine}, py3CH {tris(2-pyridyl)methane}, and py3P {tris(2-pyridyl)phosphine} in toluene solution realize compounds with the general formulation [Re(ligand)(CO)3Cl] in which the tripyridyl ligands are bidentate. X-ray structural determinations of fac-[Re(typ)(CO)3Cl].H2O and fac-[Re(py3N)(CO)3Cl] confirm these assignments. [Re(tpy)(CO)3Cl].H2O (C18H13ClN3O4Re) is monoclinic, space group P21/n, with cell dimensions a = 7.432(2) Å, b = 17.016(4) Å, c = 14.466(2) Å, β = 93.51(2)°, and Z = 4; full-matrix least-squares refinement on 2435 reflections with I ? 2.5σ(I) converged to a final R = 0.028 and Rw = 0.029. [Re(py3N)(CO)3Cl] (C18H12ClN4O3Re) is triclinic, space group P1 with cell dimensions a = 13.761(2) Å, b = 14.636(6)Å, c = 11.110(2) Å, α = 110.70(2)°, β = 102.45(2)°, γ = 107.48(2)°, and Z = 4; full-matrix least-squares refinement on 3459 reflections with I ? 2.5σ(I) converged to a final R = 0.038 and Rw = 0.039. If the synthetic procedure is undertaken under irradiation by visible light, for the ligand py3N a species [Re(py3N)(CO)2Cl] (characterized by infrared spectroscopy and conductance measurements) is also formed, in which the ligand py3N is tridentate. No analogous tridentate species is formed with the ligands tpy or py3P, although there is evidence that it also forms for py3CH.  相似文献   

18.
Synthetic approaches to metal complexes with polymeric ligands are described. The development of efficient methods for preparing simple bipyridine (bpy) derivatives and their corresponding metal complexes has facilitated their use as initiators and coupling agents in polymer syntheses. Ligand reagents were utilized as initiators in controlled polymerization reactions to form poly(2‐R‐2‐oxazolines) (R = methyl, ethyl, phenyl, undecyl), polystyrenes, poly(methyl methacrylates) (PMMA)s, poly(ϵ‐caprolactone)s, and poly(lactic acid)s with bipyridine chelates at the end or centers of the chains. Poly(ethylene glycol) macroligands were formed by a chain‐coupling method. Detailed studies of reaction kinetics were performed to determine the scope and limitations of each reaction type with different catalysts and reaction conditions. These results are illustrated for bpyPMMAn (n = 1 or 2), which was prepared by atom transfer radical polymerization with a CuBr/1,4,4,7,7,10‐hexamethyltriethylenetetraamine catalyst system. Results of the kinetics investigations performed with other ligands and metalloinitiators are summarized. Macroligands thus prepared were coordinated to a labile metal ion, Fe(II), with standard protocols. Ultraviolet–visible spectral data for selected Fe‐centered polymers are provided that confirm the production of the targeted polymeric iron complex products. An inert metal, Ru(II), was used as a template for generating architectural diversity; polymeric complexes with one to six chains emanating from the central core, as well as different heteroarm star products, were prepared. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4704–4716, 2000  相似文献   

19.
The resonance Raman spectra of tris(acetylacetonatoiron(III)) and ruthenium(III) complexes in various solvents and in water-acetonitrile (W-AN) mixtures were measured. The resonance Raman spectra of both complexes indicated peaks near 460 and around 1580 cm–1. Thev(C-O) peak (around 1580 cm–1) is shifted to low frequency with an increase in the dielectric constant T of the solvents, whereas thev(M-O) (M=Fe and Ru, near 460 cm–1) are constant, independent of T. It implies that the C-O bond in the acac ligand is lengthened by the polarizability effect of the solvents, while both the Fe-O and Ru-O bonds, which are located in the inside of the complexes, are not influenced by the solvents indicating that the interaction does not depend on the properties of individual solvent molecules but on those of the aggregate.  相似文献   

20.
A commercially available tris(3,6‐dioxaheptyl)amine (TDA‐1) was used as a novel ligand for activator generated by electron transfer atom transfer radical polymerization (AGET ATRP) of styrene in bulk or solution mediated by iron(III) catalyst in the presence of a limited amount of air. FeCl3 · 6H2O and (1‐bromoethyl)benzene (PEBr) were used as the catalyst and initiator, respectively; and environmentally benign ascorbic acid (VC) was used as the reducing agent. The polymerizations show the features of “living”/controlled free‐radical polymerizations and well‐defined polystyrenes with molecular weight Mn = 2400–36,500 g/mol and narrow polydispersity (Mw/Mn = 1.11–1.29) were obtained. The “living” feature of the obtained polymer was further confirmed by a chain‐extension experiment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2002–2008, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号