首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To compute the smallest eigenvalues and associated eigenvectors of a real symmetric matrix, we consider the Jacobi–Davidson method with inner preconditioned conjugate gradient iterations for the arising linear systems. We show that the coefficient matrix of these systems is indeed positive definite with the smallest eigenvalue bounded away from zero. We also establish a relation between the residual norm reduction in these inner linear systems and the convergence of the outer process towards the desired eigenpair. From a theoretical point of view, this allows to prove the optimality of the method, in the sense that solving the eigenproblem implies only a moderate overhead compared with solving a linear system. From a practical point of view, this allows to set up a stopping strategy for the inner iterations that minimizes this overhead by exiting precisely at the moment where further progress would be useless with respect to the convergence of the outer process. These results are numerically illustrated on some model example. Direct comparison with some other eigensolvers is also provided. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Several Jacobi–Davidson type methods are proposed for computing interior eigenpairs of large‐scale cubic eigenvalue problems. To successively compute the eigenpairs, a novel explicit non‐equivalence deflation method with low‐rank updates is developed and analysed. Various techniques such as locking, search direction transformation, restarting, and preconditioning are incorporated into the methods to improve stability and efficiency. A semiconductor quantum dot model is given as an example to illustrate the cubic nature of the eigenvalue system resulting from the finite difference approximation. Numerical results of this model are given to demonstrate the convergence and effectiveness of the methods. Comparison results are also provided to indicate advantages and disadvantages among the various methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a new variant of the Jacobi–Davidson (JD) method is presented that is specifically designed for real unsymmetric matrix pencils. Whenever a pencil has a complex conjugate pair of eigenvalues, the method computes the two‐dimensional real invariant subspace spanned by the two corresponding complex conjugated eigenvectors. This is beneficial for memory costs and in many cases it also accelerates the convergence of the JD method. Both real and complex formulations of the correction equation are considered. In numerical experiments, the RJDQZ variant is compared with the original JDQZ method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
We study Davidson‐type subspace eigensolvers. Correction equations of Jacobi–Davidson and several other schemes are reviewed. New correction equations are derived. A general correction equation is constructed, existing correction equations may be considered as special cases of this general equation. The main theme of this study is to identify the essential common ingredient that leads to the efficiency of a diverse form of Davidson‐type methods. We emphasize the importance of the approximate Rayleigh‐quotient‐iteration direction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we propose an inverse inexact iteration method for the computation of the eigenvalue with the smallest modulus and its associated eigenvector for a large sparse matrix. The linear systems of the traditional inverse iteration are solved with accuracy that depends on the eigenvalue with the second smallest modulus and iteration numbers. We prove that this approach preserves the linear convergence of inverse iteration. We also propose two practical formulas for the accuracy bound which are used in actual implementation. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
Convergence results are provided for inexact two‐sided inverse and Rayleigh quotient iteration, which extend the previously established results to the generalized non‐Hermitian eigenproblem and inexact solves with a decreasing solve tolerance. Moreover, the simultaneous solution of the forward and adjoint problem arising in two‐sided methods is considered, and the successful tuning strategy for preconditioners is extended to two‐sided methods, creating a novel way of preconditioning two‐sided algorithms. Furthermore, it is shown that inexact two‐sided Rayleigh quotient iteration and the inexact two‐sided Jacobi‐Davidson method (without subspace expansion) applied to the generalized preconditioned eigenvalue problem are equivalent when a certain number of steps of a Petrov–Galerkin–Krylov method is used and when this specific tuning strategy is applied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We propose subspace methods for three‐parameter eigenvalue problems. Such problems arise when separation of variables is applied to separable boundary value problems; a particular example is the Helmholtz equation in ellipsoidal and paraboloidal coordinates. While several subspace methods for two‐parameter eigenvalue problems exist, their extensions to a three‐parameter setting seem challenging. An inherent difficulty is that, while for two‐parameter eigenvalue problems, we can exploit a relation to Sylvester equations to obtain a fast Arnoldi‐type method, such a relation does not seem to exist when there are three or more parameters. Instead, we introduce a subspace iteration method with projections onto generalized Krylov subspaces that are constructed from scratch at every iteration using certain Ritz vectors as the initial vectors. Another possibility is a Jacobi–Davidson‐type method for three or more parameters, which we generalize from its two‐parameter counterpart. For both approaches, we introduce a selection criterion for deflation that is based on the angles between left and right eigenvectors. The Jacobi–Davidson approach is devised to locate eigenvalues close to a prescribed target; yet, it often also performs well when eigenvalues are sought based on the proximity of one of the components to a prescribed target. The subspace iteration method is devised specifically for the latter task. The proposed approaches are suitable especially for problems where the computation of several eigenvalues is required with high accuracy. MATLAB implementations of both methods have been made available in the package MultiParEig (see http://www.mathworks.com/matlabcentral/fileexchange/47844-multipareig ).  相似文献   

9.
Sadkane  Miloud  Sidje  Roger B. 《Numerical Algorithms》1999,20(2-3):217-240
The Davidson method is a preconditioned eigenvalue technique aimed at computing a few of the extreme (i.e., leftmost or rightmost) eigenpairs of large sparse symmetric matrices. This paper describes a software package which implements a deflated and variable-block version of the Davidson method. Information on how to use the software is provided. Guidelines for its upgrading or for its incorporation into existing packages are also included. Various experiments are performed on an SGI Power Challenge and comparisons with ARPACK are reported. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
After reviewing the harmonic Rayleigh–Ritz approach for the standard and generalized eigenvalue problem, we discuss several extraction processes for subspace methods for the polynomial eigenvalue problem. We generalize the harmonic and refined Rayleigh–Ritz approaches which lead to new approaches to extract promising approximate eigenpairs from a search space. We give theoretical as well as numerical results of the methods. In addition, we study the convergence of the Jacobi–Davidson method for polynomial eigenvalue problems with exact and inexact linear solves and discuss several algorithmic details. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
We describe randomized algorithms for computing the dominant eigenmodes of the generalized Hermitian eigenvalue problem Ax = λBx, with A Hermitian and B Hermitian and positive definite. The algorithms we describe only require forming operations Ax,Bx and B?1x and avoid forming square roots of B (or operations of the form, B1/2x or B?1/2x). We provide a convergence analysis and a posteriori error bounds and derive some new results that provide insight into the accuracy of the eigenvalue calculations. The error analysis shows that the randomized algorithm is most accurate when the generalized singular values of B?1A decay rapidly. A randomized algorithm for the generalized singular value decomposition is also provided. Finally, we demonstrate the performance of our algorithm on computing an approximation to the Karhunen–Loève expansion, which involves a computationally intensive generalized Hermitian eigenvalue problem with rapidly decaying eigenvalues. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Suppose that the eigenvalues of an Hermitian matrix A whose graph is a tree T are known, as well as the eigenvalues of the principal submatrix of A corresponding to a certain branch of T. A method for constructing a larger tree T?', in which the branch is ‘`duplicated’', and an Hermitian matrix A′ whose graph is T?' is described. The eigenvalues of A' are all of those of A, together with those corresponding to the branch, including multiplicities. This idea is applied (1) to give a solution to the inverse eigenvalue problem for stars, (2) to prove that the known diameter lower bound, for the minimum number of distinct eigenvalues among Hermitian matrices with a given graph, is best possible for trees of bounded diameter, and (3) to increase the list of trees for which all possible lists for the possible spectra are know. A generalization of the basic branch duplication method is presented.  相似文献   

13.
We consider the problem of completion of a matrix with a specified lower triangular part to a unitary matrix. In this paper we obtain the necessary and sufficient conditions of existence of a unitary completion without any additional constraints and give a general formula for this completion. The paper is mainly focused on matrices with the specified lower triangular part of a special form. For such a specified part the unitary completion is a structured matrix, and we derive in this paper the formulas for its structure. Next we apply the unitary completion method to the solution of the eigenvalue problem for a class of structured matrices via structured QR iterations.

  相似文献   


14.
In this article, the Sawada–Kotera–Ito seventh‐order equation is studied. He's variational iteration method and Adomian's decomposition method (ADM) are applied to obtain solution of this equation. We compare these methods together. The study highlights the significant features of the employed methods and its capability of handling completely integrable equations. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 887–897, 2011  相似文献   

15.
In this paper, we focus on the stochastic inverse eigenvalue problem with partial eigendata of constructing a stochastic matrix from the prescribed partial eigendata. A Riemannian variant of the Fletcher–Reeves conjugate gradient method is proposed for solving a general unconstrained minimization problem on a Riemannian manifold, and the corresponding global convergence is established under some assumptions. Then, we reformulate the inverse problem as a nonlinear least squares problem over a matrix oblique manifold, and the application of the proposed geometric method to the nonlinear least squares problem is investigated. The proposed geometric method is also applied to the case of prescribed entries and the case of column stochastic matrix. Finally, some numerical tests are reported to illustrate that the proposed geometric method is effective for solving the inverse problem.  相似文献   

16.
The action of external vibrating forces on mechanical structures can cause severe damages when resonance occurs. The removal of natural frequencies of the structure from resonance bands is therefore of great importance. This problem is called frequency isolation problem and is the subject of this paper. A new inverse eigenvalue method is proposed and applied to spring–mass systems, which have generated much interest in the literature as prototypes of vibrating structures. The novelty of the method lies in using the zeros of the frequency response function at the last mass as control variables in an optimization problem to minimize the impact of redesign. Numerically accurate algorithms for computing the sensitivity with respect to the control variables are presented, which form the basis of an efficient multidimensional search strategy to solve the frequency isolation problem. Copyright © 2001 by John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the equivalence of the convergence between the modified Mann–Ishikawa and multi-step Noor iterations with errors is proven for the successively strongly pseudo-contractive operators without Lipschitzian assumption. Our results generalize the recent results of the paper [B.E. Rhoades, S.M. Soltuz, The equivalence between Mann–Ishikawa iterations and multi-step iteration, Nonlinear Anal. 58 (2004) 219–228; B.E. Rhoades, S.M. Soltuz, The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudo-contractive maps, J. Math. Anal. Appl. 289 (2004) 266–278] by extending to the more generalized multi-step iterations with errors and hence improve the corresponding results of all the references in bibliography by providing the equivalences of convergence between all of these up-to-date iteration schemes.  相似文献   

18.
We consider an initial boundary‐value problem for the generalized Benjamin–Bona–Mahony equation. A three‐level conservative difference schemes are studied. The obtained algebraic equations are linear with respect to the values of unknown function for each new level. It is proved that the scheme is convergent with the convergence rate of order k – 1, when the exact solution belongs to the Sobolev space of order . © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 301–320, 2014  相似文献   

19.
A kind of generalized inverse eigenvalue problem is proposed which includes the additive, multiplicative and classical inverse eigenvalue problems as special cases. Newton's method is applied, and a local convergence analysis is given for both the distinct and the multiple eigenvalue cases. When the multiple eigenvalues are present we show how to state the problem so that it is not over-determined, and discuss a Newton-method for the modified problem. We also prove that the modified method retains quadratic convergence, and present some numerical experiments to illustrate our results. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
A mixed boundary value problem for the stationary heat transfer equation in a thin layer around a surface with the boundary is investigated. The main objective is to trace what happens in Γ‐limit when the thickness of the layer converges to zero. The limit Dirichlet BVP for the Laplace–Beltrami equation on the surface is described explicitly, and we show how the Neumann boundary conditions in the initial BVP transform in the Γ‐limit. For this, we apply the variational formulation and the calculus of Günter's tangential differential operators on a hypersurface and layers, which allow global representation of basic differential operators and of corresponding boundary value problems in terms of the standard Euclidean coordinates of the ambient space . Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号