首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel optimization method is described for the acquisition of direct one‐bond heteronuclear correlations. The RDSQC (Randomly optimized Direct correlation Single Quantum Coherence) experiment utilizes an optimization based on the randomly ordered sampling of a range of couplings. The random order of the l/(2*(1JCHmin)) delays removes the signal dependency on a single type of apodization, thus eliminating a significant portion of the F1 artifacts induced in the accordion‐optimized ADSQC experiment. Compared to the statically optimized GHSQC, the randomly optimized data maintains the desired signal intensity in most cases, with a small loss for the weakly coupled proton‐carbon pairs and significant gains for the more strongly coupled pairs. Compared to the accordion‐optimized ADSQC data, the randomly optimized data afforded similar signal‐to‐noise without the F1 modulated artifacts simplifying spectral interpretation.  相似文献   

2.
During the terminal heat sterilization of the lipid emulsion final dose formulation of the photodynamic therapeutic (PDT) agent tin ethyl etiopurpurin (SnET2), a new degradant was observed at very low levels. The degradant, which was prone to photo‐instability, was isolated by preparative chromatography and subsequently characterized by mass spectrometry and NMR methods. Reproducible parent ion clusters were only observable via negative ion APCI methods. Because of the limited isolate sample, NMR characterization was done using 1.7 mm SMIDG (SubMicro Inverse‐Detection Gradient) NMR probe technology in conjunction with the accordion‐optimized IMPEACH‐MBC long‐range heteronuclear shift correlation experiment. The “static” 8 Hz optimization of the GHMBC experiment failed to allow the observation of a number of long‐range correlations that were of critical importance to the determination of the structure of the impurity. In contrast, all of the correlations required to assemble the structure were obtained from an IMPEACH‐MBC experiment optimized for long‐range heteronuclear couplings in the range from 2–10 Hz.  相似文献   

3.
The recently reported LR-HSQMBC experiment has been optimized for 1H–15N long-range heteronuclear couplings. Several previously unreported four-bond correlations, consistent with the predicted by DFT calculations (0.2–0.3 Hz 4JNH couplings), have been observed for strychnine using 2 Hz optimization of the LR-HSQMBC experiment. This experiment offers an advantage over accordion-optimized experiments such as IMPEACH and CIGAR for the observation of long-range 1H–15N correlations in that the experiment is refocused and employs a CLIP pulse sequence element to bring the long-range correlations into phase, allowing broadband X-decoupling to be employed during acquisition.  相似文献   

4.
The role of C-H...O hydrogen bonds in the stabilization of biomolecules is increasingly being recognized from the evidence of close C-H...O contacts in crystal structures. However, relatively little is known about their strength. Here, we report the observation of NMR scalar couplings (h3JCalphaC') between the two carbons on each side of Calpha-Halpha...O=C H-bonds in proteins. These couplings give direct evidence of the correlation of the electronic wave functions in the donor and acceptor groups of Calpha-Halpha...O=C H-bonds. A long-range H(NCO)CA experiment or a selective long-range H(NCA)CO experiment was used for the detection of h3JCalphaC' correlations in the beta-sheet regions of the immunoglobulin binding domain of protein G. In total, six such correlations were detectable. These correspond to half of the Calpha-Halpha...O=C H-bonds of protein G with Halpha...O distances shorter than 2.5 A. The h3JCalphaC' couplings range from 0.2 to 0.3 Hz and are in good agreement with predicted average values based on DFT/FPT calculations. An anticorrelation is observed with the size of h3JNC' coupling constants across N-HN...O=C H-bonds, which share the same acceptor carbonyl oxygen.  相似文献   

5.
The first demonstrated example of 19F–15N long‐range heteronuclear shift correlation spectroscopy at natural abundance is reported. Because of the very large variation in the size of 2J(N,F) vs 3J(N,F) long‐range heteronuclear couplings, the utilization of one of the new accordion‐optimized long‐range heteronuclear shift correlations experiments is essential if all possible correlations are to be observed in a single experiment. A modified IMPEACH‐MBC pulse sequence was used in conjunction with an optimization range from 4 to 50 Hz to demonstrate the technique using a mixture of 2‐ and 3‐fluoropyridine, which had 2J(N,F) and 3J(N,F) long‐range couplings of ?52 and 3.6 Hz, respectively. Because of the size of the 2J(N,F) long‐range coupling constant, a J‐modulation of the long‐range correlation response is observed in the spectrum resulting in a ‘doublet’ in F1 due to amplitude modulation. The size of the ‘doublet’ is shown to be a function of the parameter selection (t1max,Tmax,Tmin and spectral width in F1). This behavior is similar to F1 ‘skew’ associated with long‐range correlation responses in ACCORD‐HMBC spectra which has been analyzed in detail previously. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The proton-carbon correlation spectra, HMBC (heteronuclear multiple bond correlation) and HMQC (heteronuclear multiple quantum correlation), respectively, provide direct and remote connectivity information with high sensitivity. Their combination enables carbon-carbon proximity relationships to be deduced, which are formally identical to those produced by a fictitious INADEQUATE-2D experiment, where correlations would be established exclusively between atoms linked by one or two bonds. The CASA program uses these relationships, as well as DEPT spectra and elementary chemical-shift considerations to assign the 13C spectrum of a compound if its structure is known or assumed. If the structure conflicts with the experimental data, no assignment is produced. The CASA program serves as an aid to either spectral assignment or structural elucidation.  相似文献   

7.
A computational study of gaseous helium-3 at T=5.23 K, for number densities rho N<0.0021 A(-3), analyzing the different pair and triplet structures in both the r and the k spaces, is presented. Structures in r space (i.e., instantaneous, total continuous linear response, and centroids) are determined via path-integral Monte Carlo simulations in the canonical ensemble by utilizing the Aziz-Slaman and the SAPT2 interatomic potentials. Additional results obtained with the application of two closures for triplets in r space, the Kirkwood superposition approximation and the Jackson-Feenberg convolution, are also reported. Besides, an analysis of the nonsuitability of quantum hard spheres for describing this system is included. The pair structures in k space are fixed via Ornstein-Zernike schemes appropriate for dealing with quantum diffraction effects in fluids. The effect on the quality of the computed isothermal compressibilities brought about by increasing the sample size in the simulations and by the subsequent application of a grand ensemble correction to the asymptotic behavior of the canonical pair radial correlation functions is also investigated. Furthermore, it is demonstrated analytically that the methods of classical statistical mechanics for dealing with the higher-order direct correlation functions remain fully valid for studying the higher-order correlations of path-integral centroids. By taking advantage of this result, the triplet structure factors for the centroid (also for the instantaneous) correlations are computed by following a number of distinct closures and methods that involve triplet direct correlation functions. The latter computations are intended to explore an alternative scheme to the very expensive fixing of triplet structure factors through direct path integral simulations, an alternative which is expected to yield the main features of these triplet quantities for this gas. Comparison with experiment is made wherever possible, and the results presented allow one to explain the substantial structural features existing in gaseous helium-3.  相似文献   

8.
(2h)J(NN) hydrogen-bond mediated J couplings are measured in the solid state for two synthetic deoxyguanosine derivatives by (15)N MAS NMR spin-echo experiments. The use of rotor-synchronised Hahn-echo pulse train (RS-HEPT) (1)H decoupling, with a duty cycle of 6%, allows spin-echo durations out to 200 ms, hence enabling the accurate determination of J couplings as small as 3.8 Hz. A single-crystal X-ray diffraction structure exists for the shorter alkyl chain derivative dG(C(3))(2): the observation of significantly different (2h)J(NN) couplings, 6.2 +/- 0.4 and 7.4 +/- 0.4 Hz, for the two resolved N7 resonances is to be expected given the NH...N hydrogen-bonding distances of 2.91 and 2.83 A for the two distinct molecules in the asymmetric unit cell. For the longer alkyl chain derivative, dG(C(10))(2), for which there is no single-crystal diffraction structure, a (15)N refocused INADEQUATE spectrum (Pham et al., J. Am. Chem. Soc., 2005, 127, 16018-16019) has demonstrated the presence of N2-H...N7 intermolecular hydrogen-bonds indicative of a quartet-like structure. The (2h)J(NN) hydrogen-bond mediated J coupling of 5.9 +/- 0.2 Hz is at the lower end of the range (5.9-8.2 Hz) of (2h)J(NN) couplings determined from solution-state NMR of guanosine quartets in quadruplex DNA. A full discussion of the determination of error bars on the fitted parameters is given; specifically, error bars determined by a non-linear fitting (using the covariance matrix) or in a Monte-Carlo fashion are found to give effectively identical results.  相似文献   

9.
Long range heteronuclear chemical shift correlation has become an extremely useful technique for complex spectral assignment and structure elucidation. The sensitivity is higher than that afforded by 13C-13C double quantum INADEQUATE experiment. The long range heteronuclear correlation provides the means of establishing connectivities across heteroatoms. Early attempts to use long range heteronuclear chemical shift correlation by simply optimizing the delays for long range couplings met with varied success. Long range coupling responses to protonated carbon resonances can be modulated by the one bond coupling of the protonated carbon. These modulations can lead to precipitous valleys in the response curve and a corresponding loss of connectivity information. A newly reported pulse sequence employing a BIRD pulse midway through the Δ2 refocusing delay “decouples” one bond modulation effects substantially increasing the likelihood of observing the desired connectivities. The application of this technique is reported for phenanthro[1,2-b]thiophene. Unequivocal assignment of the title compound is reported using heteronuclear chemical shift correlation and long range correlation with modulation decoupling. The assignment took a total of < 15 hours of spectrometer time.  相似文献   

10.
The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.  相似文献   

11.
We report a novel 1D J‐edited pure shift NMR experiment (J‐PSHIFT) that was constructed from a pseudo 2D experiment for the direct measurement of proton–proton scalar couplings. The experiment gives homonuclear broad‐band 1H‐decoupled 1H NMR spectra, which provide a single peak for chemically distinct protons, and only retain the homonuclear‐scalar‐coupled doublet pattern at the chemical‐shift positions of the protons in the coupled network of a specific proton. This permits the direct and unambiguous measurement of the magnitudes of the couplings. The incorporation of a 1D selective correlation spectroscopy (COSY)/ total correlation spectroscopy (TOCSY) block in lieu of the initial selective pulse, results in the exclusive detection of the correlated spectrum of a specific proton.  相似文献   

12.
陈东军  朱萍  彭国平 《分析化学》2002,30(7):809-811
从泽泻中分离出新化合物泽泻萜醇F,采用二维核磁共振碳相关技术研究了该化合物的骨架结构。结合碳碳相关谱及远程碳氢相关谱等其它二维核磁共振技术,分析了该化合物的常规氢谱和碳谱,并准确归属了质子和碳核的化学位移。  相似文献   

13.
A carbon-detected TROSY-optimized experiment correlating 1HN, 15N, and 13C' resonances, referred to as c-TROSY-HNCO is presented, in which the 1HN and 15N TROSY effects are maintained in both indirect dimensions, while the directly detected 13C' is doubly TROSY-optimized with respect to 1HN and 15N. A new strategy for sensitivity enhancement, the so-called double echo-antiecho (dEA), is described and implemented in the c-TROSY-HNCO experiment. dEA offers sensitivity enhancement of square root of 2 in both indirect dimensions and is generally applicable to many multidimensional experiments. A carbon-detected HNCO experiment, c-HNCO, without TROSY optimization and sensitivity enhancement is also designed for comparison purposes. Relaxation simulations show that for a protein with a rotational correlation time of 10 ns or larger, the c-TROSY-HNCO experiment displays comparable or higher signal-to-noise (S/N) ratios than the c-HNCO experiment, although the former selects only 1/4 of the initial magnetization relative to the later. The high resolution afforded in the directly detected carbon dimension allows direct measurement of the doublet splitting to extract 1JCalphaC' scalar and 1DCalphaC' residual dipolar couplings. Simulations indicate that the c-TROSY-HNCO experiment offers higher precision (lower uncertainty) compared to the c-HNCO experiment for larger proteins. The experiments are applied to 15N/13C/2H/[Leu,Val]-methyl-protonated IIBMannose, a protein of molecular mass 18.6 kDa with a correlation time of approximately 10 ns at 30 degrees C. The experimental pairwise root-mean-square deviation for the measured 1JCalphaC' couplings obtained from duplicate experiments is 0.77 Hz. By directly measuring the doublet splitting, the experiments described here are expected to be much more tolerant to nonuniform values of 1JCalphaC' (or 1JCalphaC' + 1DCalphaC' for aligned samples) and pulse imperfections due to the smaller number of applied pulses in the "out-and-stay" coherence transfer in the c-HNCO-TROSY experiment relative to conventional 1H-detected "out-and-back" quantitative J correlation experiments. A carbon-detected TROSY-optimized experiment correlating 1HN, 15N, and 13C' resonances, referred to as c-TROSY-HNCO is presented, in which the 1HN and 15N TROSY effects are maintained in both indirect dimensions, while the directly detected 13C' is doubly TROSY-optimized with respect to 1HN and 15N. A new strategy for sensitivity enhancement, the so-called double echo-antiecho (dEA), is described and implemented in the c-TROSY-HNCO experiment. dEA offers sensitivity enhancement of in both indirect dimensions and is generally applicable to many multidimensional experiments.  相似文献   

14.
This contribution describes a method that manipulates the alignment director of a liquid crystalline sample to obtain anisotropic magnetic interaction parameters, such as dipolar coupling, in an oriented liquid crystalline sample. By changing the axis of rotation with respect to the applied magnetic field in a spinning liquid crystalline sample, the dipolar couplings present in a normally complex strong coupling spectrum are scaled to a simple weak coupling spectrum. This simplified weak coupling spectrum is then correlated with the isotropic chemical shift in a switched angle spinning (SAS) two-dimensional (2D) experiment. This dipolar-isotropic 2D correlation was also observed for the case where the couplings are scaled to a degree where the spectrum approaches strong coupling. The SAS 2D correlation of C(6)F(5)Cl in the nematic liquid crystal I52 was obtained by first evolving at an angle close to the magic angle (54.7 degrees ) and then directly detecting at the magic angle. The SAS method provides a 2D correlation where the weak coupling pairs are revealed as cross-peaks in the indirect dimension separated by the isotropic chemical shifts in the direct dimension. Additionally, by using a more complex SAS method which involves three changes of the spinning axis, the solidlike spinning sideband patterns were correlated with the isotropic chemical shifts in a 2D experiment. These techniques are expected to enhance the interpretation and assignment of anisotropic magnetic interactions including dipolar couplings for molecules dissolved in oriented liquid crystalline phases.  相似文献   

15.
The stereospecifity of 13C-19F couplings is investigated with 20 alicyclic compounds. One bond couplings, ranging from 168 to 214 Hz, can be represented as a function of the corresponding 13C-H coupling constants. For comparison 13C-1H couplings are determined for norboraane and adamantane and indicate considerable s character at the bridgehead C-H bond of the latter compound. One bond and geminal couplings (ranging from 18 to 24 Hz) are found to depend not significantly on the steric environment. With vicinal couplings a strong dependence is established on torsional angles, which is fitted to a Karplus function. Typical values for CCCF trans arrangements are around 10 Hz, for gauche angles less than 1.5 Hz. Vicinal couplings are substantially altered by electronegative substituents and by hybridization changes of participating carbon atoms. The 3J values observed with cycloalkylfluorides are interpreted on the basis of model geometries for the corresponding hydrocarbons. The influence of solvent and temperature changes is restricted to one bond couplings. 19F shifts in cyclohexane derivatives are constantly at higher field for axial fluorine (by ~20 ppm), but otherwise there is no significant relation to the orientation of neighbouring bonds, nor to 13C shifts of the Cα-F carbon atoms or to the corresponding one bond couplings.  相似文献   

16.
The proposed homonuclear coupling sign edited (HCSE) experiment can detect signed homonuclear couplings between low abundant nuclei like 13C, 29Si and 15N in linear spin systems, that is, in systems where two nuclei are coupled by the measured coupling, and one of them is coupled by a second coupling to a nucleus of different kind. The third nucleus is usually high abundant hydrogen. Two spectra are measured during the HCSE experiment. Their weighed sum and difference yield two other spectra, one containing peaks coupled only by positive measured couplings and the other having peaks coupled by negative measured couplings. The usual E.COSY‐type experiment requires all three couplings in the three spin system (triangular spin system) and not only two couplings as the HCSE experiment. The experiment was successfully tested on known carbon–carbon and silicon–silicon two bond couplings. A set of six simple siloxanes with |2J(Si‐O‐Si)| couplings ranging from 0.5 to 9.0 Hz was measured for the first time, and all the couplings were found to be positive. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The proton NMR spectrum of azulene has been investigated in the nematic phase of a liquid crystal. Spectral analysis provided the direct dipole-dipole coupling constants which were used to derive the structural information. It was found that the relative proton-proton distances in the 7- and 5-membered rings deviate significantly from those for regular heptagons and pentagons. Indirect spin-spin couplings were also obtained. Many of the inter-ring and long-range couplings have magnitudes between 0.2–0.8 Hz.  相似文献   

18.
Monovalent cations play an important role in many biological functions. The guanine rich sequence, d(G4T4G4), requires monovalent cations for formation of the G-quadruplex, d(G4T4G4)2. This requirement can be satisfied by thallium (Tl+), a potassium (K+) surrogate. To verify that the structure of d(G4T4G4)2 in the presence of Tl+ is similar to the K+-form of the G-quadruplex, the solution structure of the Tl+-form of d(G4T4G4)2 was determined. The 10 lowest energy structures have an all atom RMSD of 0.76 +/- 0.16 A. Comparison of this structure to the identical G-quadruplex formed in the presence of K+ validates the isomorphous nature of Tl+ and K+. Using a 1H-205Tl spin-echo difference experiment we show that, in the Tl+-form of d(G4T4G4)2, small scalar couplings (<1 Hz) exist between 205Tl and protons in the G-quadruplex. These data comprise the first 1H-205Tl scalar couplings observed in a biological system and have the potential to provide important constraints for structure determination. These experiments can be applied to any system in which the substituted Tl+ cations are in slow exchange with the bulk ions in solution.  相似文献   

19.
[Structure: see text] OH...OH hydrogen bond mediated scalar couplings have been observed in acyclic syn- and anti-1,3-diols using a 2D 1H COSYLR NMR experiment and quantified with an uncertainty of +/-0.02 Hz with a selective-excitation spin-echo NMR experiment. A theoretical investigation confirmed the importance of the hydrogen bond in mediating the spin-spin coupling in these systems.  相似文献   

20.
On the basis of the presence or absence of long-range spin–spin coupling constants between side–chain and ring nuclei in 2-methoxyacetophenone, some literature ambiguities about the conformational preferences of the side-chains in this compound can be resolved. The long-range coupling between the methoxy protons and the ring proton ortho to the methoxy group, 5J(H, CH3)o, is (?)0.28 ± 0.02 Hz, as expected for a conformation in which the methoxy group lies in the benzene plane and cis to H-3. The methyl protons of the acetyl group do not couple to H-6, implying that this methyl group does not approach H-6 closely. However, the 13C nucleus of this methyl group couples by +0.4 Hz to H-5 and not to H-3. This stereospecific five-bond coupling implies that the acetyl group predominantly prefers an arrangement in which the carbonyl group lies trans to the other substituent, as would be expected electrostatically. Large twists out of the ring plane are not consistent with the observed couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号